↓ Skip to main content

Synergistic Killing of Polymyxin B in Combination With the Antineoplastic Drug Mitotane Against Polymyxin-Susceptible and -Resistant Acinetobacter baumannii: A Metabolomic Study

Overview of attention for article published in Frontiers in Pharmacology, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synergistic Killing of Polymyxin B in Combination With the Antineoplastic Drug Mitotane Against Polymyxin-Susceptible and -Resistant Acinetobacter baumannii: A Metabolomic Study
Published in
Frontiers in Pharmacology, April 2018
DOI 10.3389/fphar.2018.00359
Pubmed ID
Authors

Thien B. Tran, Phillip J. Bergen, Darren J. Creek, Tony Velkov, Jian Li

Abstract

Polymyxins are currently used as the last-resort antibiotics against multidrug-resistant Acinetobacter baumannii. As resistance to polymyxins emerges in A. baumannii with monotherapy, combination therapy is often the only remaining treatment option. A novel approach is to employ the combination of polymyxin B with non-antibiotic drugs. In the present study, we employed metabolomics to investigate the synergistic mechanism of polymyxin B in combination with the antineoplastic drug mitotane against polymyxin-susceptible and -resistant A. baumannii. The metabolomes of four A. baumannii strains were analyzed following treatment with polymyxin B, mitotane and the combination. Polymyxin B monotherapy induced significant perturbation in glycerophospholipid (GPL) metabolism and histidine degradation pathways in polymyxin-susceptible strains, and minimal perturbation in polymyxin-resistant strains. Mitotane monotherapy induced minimal perturbation in the polymyxin-susceptible strains, but caused significant perturbation in GPL metabolism, pentose phosphate pathway and histidine degradation in the LPS-deficient polymyxin-resistant strain (FADDI-AB065). The polymyxin B - mitotane combination induced significant perturbation in all strains except the lipid A modified polymyxin-resistant FADDI-AB225 strain. For the polymyxin-susceptible strains, the combination therapy significantly perturbed GPL metabolism, pentose phosphate pathway, citric acid cycle, pyrimidine ribonucleotide biogenesis, guanine ribonucleotide biogenesis, and histidine degradation. Against FADDI-AB065, the combination significantly perturbed GPL metabolism, pentose phosphate pathway, citric acid cycle, and pyrimidine ribonucleotide biogenesis. Overall, these novel findings demonstrate that the disruption of the citric acid cycle and inhibition of nucleotide biogenesis are the key metabolic features associated with synergistic bacterial killing by the combination against polymyxin-susceptible and -resistant A. baumannii.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Student > Master 4 18%
Student > Doctoral Student 2 9%
Other 2 9%
Researcher 2 9%
Other 3 14%
Unknown 4 18%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 6 27%
Biochemistry, Genetics and Molecular Biology 4 18%
Agricultural and Biological Sciences 2 9%
Nursing and Health Professions 1 5%
Computer Science 1 5%
Other 3 14%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 May 2018.
All research outputs
#18,603,172
of 23,043,346 outputs
Outputs from Frontiers in Pharmacology
#8,403
of 16,368 outputs
Outputs of similar age
#231,149
of 296,868 outputs
Outputs of similar age from Frontiers in Pharmacology
#192
of 394 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,368 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,868 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 394 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.