↓ Skip to main content

Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6)

Overview of attention for article published in Frontiers in Pharmacology, August 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (61st percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
1 X user
wikipedia
1 Wikipedia page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6)
Published in
Frontiers in Pharmacology, August 2018
DOI 10.3389/fphar.2018.00941
Pubmed ID
Authors

Emre Karakus, Daniel Zahner, Gary Grosser, Regina Leidolf, Cemal Gundogdu, Alberto Sánchez-Guijo, Stefan A. Wudy, Joachim Geyer

Abstract

Estrogens play a pivotal role in the development and proliferation of hormone-dependent breast cancer. Apart from free estrogens, which can directly activate the estrogen receptor (ER) of tumor cells, sulfo-conjugated steroids, which maintain high plasma concentrations even after menopause, first have to be imported into tumor cells by carrier-mediated uptake and then can be cleaved by the steroid sulfatase to finally activate ERs and cell proliferation. In the present study, expression of the sodium-dependent organic anion transporter SOAT was analyzed in breast cancer and its role for hormone-dependent proliferation of T47D breast cancer cells was elucidated. The SOAT protein was localized to the ductal epithelium of the mammary gland by immunohistochemistry. SOAT showed high expression in different pathologies of the breast with a clear ductal localization, including ductal hyperplasia, intraductal papilloma, and intraductal carcinoma. In a larger breast cancer cDNA array, SOAT mRNA expression was high in almost all adenocarcinoma specimen, but expression did not correlate with either the ER, progesterone receptor, or human epidermal growth factor receptor 2 status. Furthermore, SOAT expression did not correlate with tumor stage or grade, indicating widespread SOAT expression in breast cancer. To analyze the role of SOAT for breast cancer cell proliferation, T47D cells were stably transfected with SOAT and incubated under increasing concentrations of estrone-3-sulfate (E1S) and estradiol at physiologically relevant concentrations. Cell proliferation was significantly increased by 10-9 M estradiol as well as by E1S with EC50 of 2.2 nM. In contrast, T47D control cells showed 10-fold lower sensitivity to E1S stimulation with EC50 of 21.7 nM. The E1S-stimulated proliferation of SOAT-T47D cells was blocked by the SOAT inhibitor 4-sulfooxymethylpyrene. The present study clearly demonstrates expression of SOAT in breast cancer tissue with ductal localization. SOAT inhibition can block the E1S-stimulated proliferation of T47D breast cancer cells, demonstrating that SOAT is an interesting novel drug target from the group of E1S uptake carriers for anti-proliferative breast cancer therapy.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 21%
Student > Ph. D. Student 2 11%
Librarian 1 5%
Other 1 5%
Unspecified 1 5%
Other 3 16%
Unknown 7 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 21%
Pharmacology, Toxicology and Pharmaceutical Science 2 11%
Medicine and Dentistry 2 11%
Agricultural and Biological Sciences 1 5%
Unspecified 1 5%
Other 2 11%
Unknown 7 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2018.
All research outputs
#7,327,663
of 23,103,436 outputs
Outputs from Frontiers in Pharmacology
#3,134
of 16,459 outputs
Outputs of similar age
#126,902
of 333,772 outputs
Outputs of similar age from Frontiers in Pharmacology
#72
of 391 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 16,459 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,772 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.
We're also able to compare this research output to 391 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.