↓ Skip to main content

Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

Overview of attention for article published in Frontiers in Physics, July 2017
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network
Published in
Frontiers in Physics, July 2017
DOI 10.3389/fphy.2017.00031
Pubmed ID
Authors

Silvia Tommasin, Daniele Mascali, Tommaso Gili, Ibrahim Eid Assan, Marta Moraschi, Michela Fratini, Richard G. Wise, Emiliano Macaluso, Silvia Mangia, Federico Giove

Abstract

Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 14%
Student > Master 5 11%
Student > Ph. D. Student 5 11%
Student > Bachelor 3 7%
Other 2 5%
Other 7 16%
Unknown 16 36%
Readers by discipline Count As %
Neuroscience 9 20%
Psychology 8 18%
Medicine and Dentistry 3 7%
Nursing and Health Professions 1 2%
Physics and Astronomy 1 2%
Other 3 7%
Unknown 19 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2017.
All research outputs
#15,470,944
of 22,992,311 outputs
Outputs from Frontiers in Physics
#767
of 3,527 outputs
Outputs of similar age
#199,477
of 316,990 outputs
Outputs of similar age from Frontiers in Physics
#10
of 21 outputs
Altmetric has tracked 22,992,311 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,527 research outputs from this source. They receive a mean Attention Score of 2.6. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,990 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.