↓ Skip to main content

Fractal Physiology and the Fractional Calculus: A Perspective

Overview of attention for article published in Frontiers in Physiology, January 2010
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

blogs
1 blog
twitter
3 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
183 Dimensions

Readers on

mendeley
200 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fractal Physiology and the Fractional Calculus: A Perspective
Published in
Frontiers in Physiology, January 2010
DOI 10.3389/fphys.2010.00012
Pubmed ID
Authors

Bruce J. West

Abstract

This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. We emphasize the difference between homeostatic and allometric control mechanisms. Homeostatic control has a negative feedback character, which is both local and rapid. Allometric control, on the other hand, is a relatively new concept that takes into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the network variable. We hypothesize that allometric control maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can often be described using the fractional calculus to capture the dynamics of complex physiologic networks.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 200 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 5 3%
France 2 1%
Germany 1 <1%
Italy 1 <1%
Brazil 1 <1%
Switzerland 1 <1%
Canada 1 <1%
Ukraine 1 <1%
Japan 1 <1%
Other 1 <1%
Unknown 185 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 52 26%
Researcher 40 20%
Professor 17 9%
Student > Master 15 8%
Professor > Associate Professor 14 7%
Other 44 22%
Unknown 18 9%
Readers by discipline Count As %
Medicine and Dentistry 40 20%
Engineering 24 12%
Agricultural and Biological Sciences 21 11%
Physics and Astronomy 18 9%
Psychology 16 8%
Other 49 25%
Unknown 32 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 December 2023.
All research outputs
#2,955,199
of 25,037,495 outputs
Outputs from Frontiers in Physiology
#1,570
of 15,388 outputs
Outputs of similar age
#15,070
of 175,186 outputs
Outputs of similar age from Frontiers in Physiology
#2
of 14 outputs
Altmetric has tracked 25,037,495 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 15,388 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 175,186 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.