↓ Skip to main content

Modeling the Autonomic and Metabolic Effects of Obstructive Sleep Apnea: A Simulation Study

Overview of attention for article published in Frontiers in Physiology, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
66 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modeling the Autonomic and Metabolic Effects of Obstructive Sleep Apnea: A Simulation Study
Published in
Frontiers in Physiology, January 2012
DOI 10.3389/fphys.2011.00111
Pubmed ID
Authors

Limei Cheng, Michael C. K. Khoo

Abstract

Long-term exposure to intermittent hypoxia and sleep fragmentation introduced by recurring obstructive sleep apnea (OSA) has been linked to subsequent cardiovascular disease and Type 2 diabetes. The underlying mechanisms remain unclear, but impairment of the normal interactions among the systems that regulate autonomic and metabolic function is likely involved. We have extended an existing integrative model of respiratory, cardiovascular, and sleep-wake state control, to incorporate a sub-model of glucose-insulin-fatty acid regulation. This computational model is capable of simulating the complex dynamics of cardiorespiratory control, chemoreflex and state-related control of breath-to-breath ventilation, state-related and chemoreflex control of upper airway potency, respiratory and circulatory mechanics, as well as the metabolic control of glucose-insulin dynamics and its interactions with the autonomic control. The interactions between autonomic and metabolic control include the circadian regulation of epinephrine secretion, epinephrine regulation on dynamic fluctuations in glucose and free-fatty acid in plasma, metabolic coupling among tissues and organs provided by insulin and epinephrine, as well as the effect of insulin on peripheral vascular sympathetic activity. These model simulations provide insight into the relative importance of the various mechanisms that determine the acute and chronic physiological effects of sleep-disordered breathing. The model can also be used to investigate the effects of a variety of interventions, such as different glucose clamps, the intravenous glucose tolerance test, and the application of continuous positive airway pressure on OSA subjects. As such, this model provides the foundation on which future efforts to simulate disease progression and the long-term effects of pharmacological intervention can be based.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
Colombia 1 2%
Netherlands 1 2%
Peru 1 2%
Unknown 62 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 17%
Student > Ph. D. Student 9 14%
Student > Bachelor 6 9%
Professor 5 8%
Lecturer 4 6%
Other 16 24%
Unknown 15 23%
Readers by discipline Count As %
Medicine and Dentistry 16 24%
Engineering 11 17%
Agricultural and Biological Sciences 8 12%
Nursing and Health Professions 3 5%
Psychology 2 3%
Other 7 11%
Unknown 19 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 January 2012.
All research outputs
#20,165,369
of 22,675,759 outputs
Outputs from Frontiers in Physiology
#9,270
of 13,467 outputs
Outputs of similar age
#221,176
of 244,088 outputs
Outputs of similar age from Frontiers in Physiology
#208
of 309 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,467 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 309 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.