↓ Skip to main content

Are the anti-arrhythmic effects of omega-3 fatty acids due to modulation of myocardial calcium handling?

Overview of attention for article published in Frontiers in Physiology, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Are the anti-arrhythmic effects of omega-3 fatty acids due to modulation of myocardial calcium handling?
Published in
Frontiers in Physiology, January 2012
DOI 10.3389/fphys.2012.00373
Pubmed ID
Authors

Rajiv Sankaranarayanan, Luigi Venetucci

Abstract

Both animal and clinical studies have demonstrated that omega-3 fatty acids have anti-arrhythmic properties. It has been suggested that these anti-arrhythmic effects are due to modulation of the activity of various myocardial calcium handling proteins such as ryanodine receptor (RyR), L-type calcium current and sodium/calcium exchanger. In this article, we review all the data available on the effects of omega-3 fatty acids on ventricular myocardial calcium handling. In addition we highlight some unanswered questions and discuss possible therapeutic benefits of omega-3 fatty acids.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Other 3 50%
Researcher 1 17%
Student > Doctoral Student 1 17%
Student > Master 1 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 50%
Medicine and Dentistry 2 33%
Arts and Humanities 1 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2020.
All research outputs
#17,666,399
of 22,679,690 outputs
Outputs from Frontiers in Physiology
#7,070
of 13,472 outputs
Outputs of similar age
#191,325
of 244,102 outputs
Outputs of similar age from Frontiers in Physiology
#170
of 309 outputs
Altmetric has tracked 22,679,690 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,472 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,102 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 309 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.