↓ Skip to main content

Development of a Physiologically Based Computational Kidney Model to Describe the Renal Excretion of Hydrophilic Agents in Rats

Overview of attention for article published in Frontiers in Physiology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of a Physiologically Based Computational Kidney Model to Describe the Renal Excretion of Hydrophilic Agents in Rats
Published in
Frontiers in Physiology, January 2013
DOI 10.3389/fphys.2012.00494
Pubmed ID
Authors

Christoph Niederalt, Thomas Wendl, Lars Kuepfer, Karina Claassen, Roland Loosen, Stefan Willmann, Joerg Lippert, Marcus Schultze-Mosgau, Julia Winkler, Rolf Burghaus, Matthias Bräutigam, Hubertus Pietsch, Philipp Lengsfeld

Abstract

A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 23%
Student > Ph. D. Student 6 20%
Student > Master 4 13%
Other 3 10%
Student > Bachelor 2 7%
Other 3 10%
Unknown 5 17%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 6 20%
Medicine and Dentistry 6 20%
Agricultural and Biological Sciences 5 17%
Engineering 2 7%
Mathematics 1 3%
Other 5 17%
Unknown 5 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2013.
All research outputs
#20,178,948
of 22,693,205 outputs
Outputs from Frontiers in Physiology
#9,285
of 13,495 outputs
Outputs of similar age
#248,695
of 280,672 outputs
Outputs of similar age from Frontiers in Physiology
#243
of 398 outputs
Altmetric has tracked 22,693,205 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,495 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,672 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.