↓ Skip to main content

Detection of thermogenesis in rodents in response to anti-obesity drugs and genetic modification

Overview of attention for article published in Frontiers in Physiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Detection of thermogenesis in rodents in response to anti-obesity drugs and genetic modification
Published in
Frontiers in Physiology, January 2013
DOI 10.3389/fphys.2013.00064
Pubmed ID
Authors

Jonathan R. S. Arch, Paul Trayhurn

Abstract

Many compounds and genetic manipulations are claimed to confer resistance to obesity in rodents by raising energy expenditure. Examples taken from recent and older literature, demonstrate that such claims are often based on measurements of energy expenditure after body composition has changed, and depend on comparisons of energy expenditure divided by body weight. This is misleading because white adipose tissue has less influence than lean tissue on energy expenditure. Application of this approach to human data would suggest that human obesity is usually due to a low metabolic rate, which is not an accepted view. Increased energy expenditure per animal is a surer way of demonstrating thermogenesis, but even then it is important to know whether this is due to altered body composition (repartitioning), or increased locomotor activity rather than thermogenesis per se. Regression analysis offers other approaches. The thermogenic response to some compounds has a rapid onset and so cannot be due to altered body composition. These compounds usually mimic or activate the sympathetic nervous system. Thermogenesis occurs in, but may not be confined to, brown adipose tissue. It should not be assumed that weight loss in response to these treatments is due to thermogenesis unless there is a sustained increase in 24-h energy expenditure. Thyroid hormones and fibroblast growth factor 21 also raise energy expenditure before they affect body composition. Some treatments and genetic modifications alter the diurnal rhythm of energy expenditure. It is important to establish whether this is due to altered locomotor activity or efficiency of locomotion. There are no good examples of compounds that do not affect short-term energy expenditure but have a delayed effect. How and under what conditions a genetic modification or compound increases energy expenditure influences the decision on whether to seek drugs for the target or take a candidate drug into clinical studies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Unknown 38 97%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 23%
Student > Ph. D. Student 8 21%
Researcher 8 21%
Other 2 5%
Student > Master 2 5%
Other 3 8%
Unknown 7 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 26%
Biochemistry, Genetics and Molecular Biology 8 21%
Medicine and Dentistry 8 21%
Business, Management and Accounting 1 3%
Arts and Humanities 1 3%
Other 4 10%
Unknown 7 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 January 2016.
All research outputs
#17,683,485
of 22,703,044 outputs
Outputs from Frontiers in Physiology
#7,083
of 13,518 outputs
Outputs of similar age
#210,152
of 280,707 outputs
Outputs of similar age from Frontiers in Physiology
#198
of 398 outputs
Altmetric has tracked 22,703,044 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,518 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,707 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.