↓ Skip to main content

Non-linear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability

Overview of attention for article published in Frontiers in Physiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
120 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Non-linear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability
Published in
Frontiers in Physiology, January 2013
DOI 10.3389/fphys.2013.00230
Pubmed ID
Authors

Philippe Terrier, Olivier Dériaz

Abstract

It has been observed that times series of gait parameters [stride length (SL), stride time (ST), and stride speed (SS)], exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another non-linear method estimates the degree of resilience of gait control to small perturbations, i.e., the local dynamic stability (LDS). The method makes use of the maximal Lyapunov exponent, which estimates how fast a non-linear system embedded in a reconstructed state space (attractor) diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST, and SS from which the statistical persistence among consecutive strides can be assessed), and the trajectory of the center of pressure (from which the LDS can be estimated). In 20 healthy participants, the response to rhythmic auditory cueing (RAC) of LDS and of statistical persistence [assessed with detrended fluctuation analysis (DFA)] was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor) was strongly enhanced (relative change +73%). That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step) was smaller (+3%). DFA results (scaling exponents) confirmed an anti-persistent pattern in ST, SL, and SS. Long-term LDS (but not short-term LDS) and scaling exponents exhibited a significant correlation between them (r = 0.7). Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 120 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 2%
Switzerland 1 <1%
Germany 1 <1%
France 1 <1%
United States 1 <1%
Unknown 114 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 22%
Student > Master 16 13%
Researcher 16 13%
Student > Bachelor 15 13%
Student > Doctoral Student 6 5%
Other 15 13%
Unknown 26 22%
Readers by discipline Count As %
Engineering 20 17%
Sports and Recreations 13 11%
Medicine and Dentistry 12 10%
Nursing and Health Professions 9 8%
Neuroscience 8 7%
Other 22 18%
Unknown 36 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2013.
All research outputs
#14,759,250
of 22,719,618 outputs
Outputs from Frontiers in Physiology
#5,640
of 13,531 outputs
Outputs of similar age
#175,339
of 280,759 outputs
Outputs of similar age from Frontiers in Physiology
#153
of 398 outputs
Altmetric has tracked 22,719,618 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,759 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.