↓ Skip to main content

Alterations of cAMP-dependent signaling in dystrophic skeletal muscle

Overview of attention for article published in Frontiers in Physiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Alterations of cAMP-dependent signaling in dystrophic skeletal muscle
Published in
Frontiers in Physiology, January 2013
DOI 10.3389/fphys.2013.00290
Pubmed ID
Authors

Rüdiger Rudolf, Muzamil M. Khan, Danilo Lustrino, Siegfried Labeit, Ísis C. Kettelhut, Luiz C. C. Navegantes

Abstract

Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction (NMJ) is important for postsynaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor (AChR), PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as catecholamines are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
France 1 1%
Germany 1 1%
Unknown 66 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 23%
Student > Master 14 20%
Researcher 7 10%
Professor 4 6%
Student > Doctoral Student 4 6%
Other 10 14%
Unknown 14 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 22 32%
Agricultural and Biological Sciences 18 26%
Medicine and Dentistry 6 9%
Veterinary Science and Veterinary Medicine 2 3%
Neuroscience 2 3%
Other 4 6%
Unknown 15 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 October 2013.
All research outputs
#14,764,029
of 22,727,570 outputs
Outputs from Frontiers in Physiology
#5,641
of 13,537 outputs
Outputs of similar age
#175,353
of 280,760 outputs
Outputs of similar age from Frontiers in Physiology
#153
of 398 outputs
Altmetric has tracked 22,727,570 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,537 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,760 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.