↓ Skip to main content

Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology

Overview of attention for article published in Frontiers in Physiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology
Published in
Frontiers in Physiology, January 2013
DOI 10.3389/fphys.2013.00338
Pubmed ID
Authors

Chiara Donati, Francesca Cencetti, Paola Bruni

Abstract

Sphingosine 1-phosphate (S1P) is a bioactive lipid involved in the regulation of biological processes such as proliferation, differentiation, motility, and survival. Here we review the role of S1P in the biology and homeostasis of skeletal muscle. S1P derives from the catabolism of sphingomyelin and is produced by sphingosine phosphorylation catalyzed by sphingosine kinase (SK). S1P can act either intracellularly or extracellularly through specific ligation to its five G protein-coupled receptors (GPCR) named S1P receptors (S1PR). Many experimental findings obtained in the last 20 years demonstrate that S1P and its metabolism play a multifaceted role in the regulation of skeletal muscle regeneration. Indeed, this lipid is known to activate muscle-resident satellite cells, regulating their proliferation and differentiation, as well as mesenchymal progenitors such as mesoangioblasts that originate outside skeletal muscle, both involved in tissue repair following an injury or disease. The molecular mechanism of action of S1P in skeletal muscle cell precursors is highly complex, especially because S1P axis is under the control of a number of growth factors and cytokines, canonical regulators of skeletal muscle biology. Moreover, this lipid is crucially involved in the regulation of skeletal muscle contractile properties, responsiveness to insulin, fatigue resistance and tropism. Overall, on the basis of these findings S1P signaling appears to be an appealing pharmacological target for improving skeletal muscle repair. Nevertheless, further understanding is required on the regulation of S1P downstream signaling pathways and the expression of S1PR. This article will resume our current knowledge on S1P signaling in skeletal muscle, hopefully stimulating further investigation in the field, aimed at individuating novel molecular targets for ameliorating skeletal muscle regeneration and reducing fibrosis of the tissue after a trauma or due to skeletal muscle diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 2 3%
Unknown 58 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 28%
Student > Ph. D. Student 11 18%
Student > Master 7 12%
Student > Doctoral Student 5 8%
Student > Bachelor 4 7%
Other 10 17%
Unknown 6 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 28%
Agricultural and Biological Sciences 16 27%
Medicine and Dentistry 5 8%
Nursing and Health Professions 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 8 13%
Unknown 10 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 April 2015.
All research outputs
#14,766,517
of 22,731,677 outputs
Outputs from Frontiers in Physiology
#5,644
of 13,539 outputs
Outputs of similar age
#175,361
of 280,774 outputs
Outputs of similar age from Frontiers in Physiology
#153
of 398 outputs
Altmetric has tracked 22,731,677 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,539 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,774 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.