↓ Skip to main content

Spatial localization of electromyographic amplitude distributions associated to the activation of dorsal forearm muscles

Overview of attention for article published in Frontiers in Physiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spatial localization of electromyographic amplitude distributions associated to the activation of dorsal forearm muscles
Published in
Frontiers in Physiology, January 2013
DOI 10.3389/fphys.2013.00367
Pubmed ID
Authors

Alessio Gallina, Alberto Botter

Abstract

In this study we investigated whether the spatial distribution of surface electromyographic (EMG) amplitude can be used to describe the activation of muscle portions with different biomechanical actions. Ten healthy subjects performed isometric contractions aimed to selectively activate a number of forearm muscles or muscle subportions. Monopolar electromyographic signals were collected with an electrode grid of 128 electrodes placed on the proximal, dorsal portion of the forearm. The monopolar EMG amplitude [root mean square (RMS) value] distribution was calculated for each contraction, and high-amplitude channels were identified through an automatic procedure; the position of the EMG source was estimated with the barycenter of these channels. Each of the contractions tested was associated to a specific EMG amplitude distribution, whose location in space was consistent with the expected anatomical position of the main agonist muscle (or subportion). The position of each source was significantly different from the others in at least one direction (ANOVA; transversally to the forearm: P < 0.01, F = 125.92; longitudinally: P < 0.01, F = 35.83). With such an approach, we could distinguish the spatial position of EMG distributions related to the activation of contiguous muscles [e.g., extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC)], different heads of the same muscle (i.e., extensor carpi radialis (ECR) brevis and longus) and different functional compartments (i.e., EDC, middle, and ring fingers). These findings are discussed in terms of how forces along a given direction can be produced by recruiting population of motor units clustered not only in specific muscles, but also in muscle sub-portions. In addition, this study supports the use of high-density EMG systems to characterize the activation of muscle subportions with different biomechanical actions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 1%
United States 1 1%
Germany 1 1%
Unknown 83 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 24%
Student > Master 13 15%
Researcher 11 13%
Student > Bachelor 7 8%
Student > Doctoral Student 5 6%
Other 10 12%
Unknown 19 22%
Readers by discipline Count As %
Engineering 31 36%
Sports and Recreations 6 7%
Nursing and Health Professions 4 5%
Computer Science 4 5%
Agricultural and Biological Sciences 3 3%
Other 11 13%
Unknown 27 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 December 2013.
All research outputs
#17,703,558
of 22,733,113 outputs
Outputs from Frontiers in Physiology
#7,098
of 13,539 outputs
Outputs of similar age
#210,230
of 280,774 outputs
Outputs of similar age from Frontiers in Physiology
#198
of 398 outputs
Altmetric has tracked 22,733,113 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,539 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,774 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.