↓ Skip to main content

The bottom–up approach to defining life: deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

Overview of attention for article published in Frontiers in Physiology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The bottom–up approach to defining life: deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells
Published in
Frontiers in Physiology, January 2013
DOI 10.3389/fphys.2013.00369
Pubmed ID
Authors

Sathish Periyasamy, Alex Gray, Peter Kille

Abstract

In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell's multi-objective topology formed by temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organize in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly progressing, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organized into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organization, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modeling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterizes the properties and constraints that are consequential to the adaptive dynamics in biological cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 10%
Unknown 18 90%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 30%
Researcher 4 20%
Student > Doctoral Student 2 10%
Professor > Associate Professor 2 10%
Student > Bachelor 2 10%
Other 3 15%
Unknown 1 5%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 30%
Biochemistry, Genetics and Molecular Biology 4 20%
Medicine and Dentistry 3 15%
Environmental Science 1 5%
Physics and Astronomy 1 5%
Other 3 15%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 December 2013.
All research outputs
#20,213,623
of 22,736,112 outputs
Outputs from Frontiers in Physiology
#9,312
of 13,539 outputs
Outputs of similar age
#248,822
of 280,808 outputs
Outputs of similar age from Frontiers in Physiology
#243
of 398 outputs
Altmetric has tracked 22,736,112 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,539 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,808 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 398 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.