↓ Skip to main content

An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance

Overview of attention for article published in Frontiers in Physiology, August 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance
Published in
Frontiers in Physiology, August 2014
DOI 10.3389/fphys.2014.00324
Pubmed ID
Authors

Elodie Renvoisé, Frederic Michon

Abstract

A major challenge for current evolutionary and developmental biology research is to understand the evolution of morphogenesis and the mechanisms involved. Teeth are well suited for the investigation of developmental processes. In addition, since teeth are composed of hard-mineralized tissues, primarily apatite, that are readily preserved, the evolution of mammals is well documented through their teeth in the fossil record. Hypsodonty, high crowned teeth with shallow roots, and hypselodonty, ever-growing teeth, are convergent innovations that have appeared multiple times since the mammalian radiation 65 million years ago, in all tooth categories (incisors, canines, premolars, and molars). A shift to hypsodonty, or hypselodonty, during mammalian evolution is often, but not necessarily, associated with increasingly abrasive diet during important environmental change events. Although the evolution of hypsodonty and hypselodonty is considered to be the result of heterochrony of development, little has been known about the exact developmental mechanisms at the origin of these morphological traits. Developmental biologists have been intrigued by the mechanism of hypselodonty since it requires the maintenance of continuous crown formation during development via stem cell niche activity. Understanding this mechanism may allow bioengineered tooth formation in humans. Hypsodonty and hypselodonty are thus examples of phenotypic features of teeth that have both impacts in understanding the evolution of mammals and holds promise for human tooth bioengineering.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 90 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 22%
Student > Bachelor 15 17%
Researcher 12 13%
Student > Master 9 10%
Student > Postgraduate 5 6%
Other 15 17%
Unknown 14 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 38%
Earth and Planetary Sciences 11 12%
Medicine and Dentistry 9 10%
Biochemistry, Genetics and Molecular Biology 5 6%
Veterinary Science and Veterinary Medicine 3 3%
Other 8 9%
Unknown 20 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2014.
All research outputs
#15,730,223
of 23,371,053 outputs
Outputs from Frontiers in Physiology
#6,936
of 14,101 outputs
Outputs of similar age
#138,294
of 237,975 outputs
Outputs of similar age from Frontiers in Physiology
#55
of 122 outputs
Altmetric has tracked 23,371,053 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 14,101 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 237,975 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 122 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.