↓ Skip to main content

Alterations in thin filament length during postnatal skeletal muscle development and aging in mice

Overview of attention for article published in Frontiers in Physiology, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Alterations in thin filament length during postnatal skeletal muscle development and aging in mice
Published in
Frontiers in Physiology, September 2014
DOI 10.3389/fphys.2014.00375
Pubmed ID
Authors

David S. Gokhin, Emily A. Dubuc, Kendra Q. Lian, Luanne L. Peters, Velia M. Fowler

Abstract

The lengths of the sarcomeric thin filaments vary in a skeletal muscle-specific manner and help specify the physiological properties of skeletal muscle. Since the extent of overlap between the thin and thick filaments determines the amount of contractile force that a sarcomere can actively produce, thin filament lengths are accurate predictors of muscle-specific sarcomere length-tension relationships and sarcomere operating length ranges. However, the striking uniformity of thin filament lengths within sarcomeres, specified during myofibril assembly, has led to the widely held assumption that thin filament lengths remain constant throughout an organism's lifespan. Here, we rigorously tested this assumption by using computational super-resolution image analysis of confocal fluorescence images to explore the effects of postnatal development and aging on thin filament length in mice. We found that thin filaments shorten in postnatal tibialis anterior (TA) and gastrocnemius muscles between postnatal days 7 and 21, consistent with the developmental program of myosin heavy chain (MHC) gene expression in this interval. By contrast, thin filament lengths in TA and extensor digitorum longus (EDL) muscles remained constant between 2 mo and 2 yr of age, while thin filament lengths in soleus muscle became shorter, suggestive of a slow-muscle-specific mechanism of thin filament destabilization associated with aging. Collectively, these data are the first to show that thin filament lengths change as part of normal skeletal muscle development and aging, motivating future investigations into the cellular and molecular mechanisms underlying thin filament adaptation across the lifespan.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 23%
Student > Bachelor 4 15%
Student > Ph. D. Student 4 15%
Student > Master 3 12%
Student > Doctoral Student 2 8%
Other 5 19%
Unknown 2 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 23%
Agricultural and Biological Sciences 5 19%
Medicine and Dentistry 4 15%
Sports and Recreations 2 8%
Nursing and Health Professions 2 8%
Other 2 8%
Unknown 5 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 September 2014.
All research outputs
#14,786,093
of 22,764,165 outputs
Outputs from Frontiers in Physiology
#5,653
of 13,560 outputs
Outputs of similar age
#139,343
of 252,543 outputs
Outputs of similar age from Frontiers in Physiology
#41
of 125 outputs
Altmetric has tracked 22,764,165 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,560 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,543 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 125 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.