↓ Skip to main content

TonEBP/NFAT5 regulates ACTBL2 expression in biomechanically activated vascular smooth muscle cells

Overview of attention for article published in Frontiers in Physiology, December 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
TonEBP/NFAT5 regulates ACTBL2 expression in biomechanically activated vascular smooth muscle cells
Published in
Frontiers in Physiology, December 2014
DOI 10.3389/fphys.2014.00467
Pubmed ID
Authors

Maren Hödebeck, Clemens Scherer, Andreas H. Wagner, Markus Hecker, Thomas Korff

Abstract

Cytoskeletal reorganization and migration are critical responses which enable vascular smooth muscle cells (VSMCs) cells to evade, compensate, or adapt to alterations in biomechanical stress. An increase in wall stress or biomechanical stretch as it is elicited by arterial hypertension promotes their reorganization in the vessel wall which may lead to arterial stiffening and contractile dysfunction. This adaptive remodeling process is dependent on and driven by subtle phenotype changes including those controlling the cytoskeletal architecture and motility of VSMCs. Recently, it has been reported that the transcription factor nuclear factor of activated T-cells 5 (TonEBP/NFAT5) controls critical aspects of the VSMC phenotype and is activated by biomechanical stretch. We therefore hypothesized that NFAT5 controls the expression of gene products orchestrating cytoskeletal reorganization in stretch-stimulated VSMCs. Automated immunofluorescence and Western blot analyses revealed that biomechanical stretch enhances the expression and nuclear translocation of NFAT5 in VSMCs. Subsequent in silico analyses suggested that this transcription factor binds to the promotor region of ACTBL2 encoding kappa-actin which was shown to be abundantly expressed in VSMCs upon exposure to biomechanical stretch. Furthermore, ACTBL2 expression was inhibited in these cells upon siRNA-mediated knockdown of NFAT5. Kappa-actin appeared to be aligned with stress fibers under static culture conditions, dispersed in lamellipodia and supported VSMC migration as its knockdown diminishes lateral migration of these cells. In summary, our findings delineated biomechanical stretch as a determinant of NFAT5 expression and nuclear translocation controlling the expression of the cytoskeletal protein ACTBL2. This response may orchestrate the migratory activity of VSMCs and thus promote maladaptive rearrangement of the arterial vessel wall during hypertension.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Austria 1 2%
Unknown 40 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 27%
Researcher 6 15%
Student > Doctoral Student 4 10%
Student > Master 4 10%
Other 3 7%
Other 8 20%
Unknown 5 12%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 41%
Agricultural and Biological Sciences 6 15%
Medicine and Dentistry 4 10%
Psychology 3 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 4 10%
Unknown 6 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 December 2014.
All research outputs
#20,245,139
of 22,772,779 outputs
Outputs from Frontiers in Physiology
#9,334
of 13,560 outputs
Outputs of similar age
#302,275
of 360,895 outputs
Outputs of similar age from Frontiers in Physiology
#74
of 109 outputs
Altmetric has tracked 22,772,779 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,560 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,895 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 109 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.