↓ Skip to main content

Swimbladder function and the spawning migration of the European eel Anguilla anguilla

Overview of attention for article published in Frontiers in Physiology, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Swimbladder function and the spawning migration of the European eel Anguilla anguilla
Published in
Frontiers in Physiology, January 2015
DOI 10.3389/fphys.2014.00486
Pubmed ID
Authors

Bernd Pelster

Abstract

The spawning migration of the European eel is an extensive journey over 5000 to 7000 km from the European coast to the Sargasso Sea. Eels do not feed during this journey and on-board fuels must be sufficient to support the journey of 3.5 to 6 month, as well as sexual maturation and the spawning activity. Swimming of eels appears to be quite energy efficient compared to other fish species, and elevated hydrostatic pressure has been shown to even reduce the costs of transport. Recent studies revealed, however, that during traveling eels perform extensive diurnal migrations and swim at a depth of about 100-300 m at night time, but go down to 600-1000 m at day time. At a depth of 200 m eels are exposed to a hydrostatic pressure of 21 atmospheres (2.13 MPa), while at 800 m hydrostatic pressure increases to 81 atmospheres (8.21 MPa). Accordingly, without any compensation at a depth of 800 m swimbladder volume will be reduced to about 25% of the volume established with neutral buoyancy at 200 m. Consequently, these diurnal changes in depth must be taken into consideration for a calculation of the energy requirements of the spawning migration. Without compensation a compression of the swimbladder will result in a status of negative buoyancy, which makes swimming more costly. Trying to keep the status of neutral buoyancy during descent by gas secretion into the swimbladder in turn requires metabolic activity to enhance swimbladder perfusion and for acid production of the gas gland cells to stimulate gas secretion. During ascent gas is passively removed from the swimbladder in the resorbing section and in the blood transported to the gills, where it is lost into the water. Accordingly, the swimbladder appears to be a crucial organ for the spawning migration. It can be assumed that an impairment of swimbladder function for example due to an infection with the nematode Anguillicola crassus significantly threatens the success of the spawning migration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Austria 1 1%
Unknown 73 99%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 14 19%
Student > Master 11 15%
Researcher 9 12%
Student > Ph. D. Student 6 8%
Other 5 7%
Other 11 15%
Unknown 18 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 36%
Environmental Science 9 12%
Biochemistry, Genetics and Molecular Biology 9 12%
Engineering 3 4%
Veterinary Science and Veterinary Medicine 1 1%
Other 2 3%
Unknown 23 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 February 2015.
All research outputs
#14,666,124
of 22,776,824 outputs
Outputs from Frontiers in Physiology
#5,608
of 13,560 outputs
Outputs of similar age
#195,407
of 352,499 outputs
Outputs of similar age from Frontiers in Physiology
#46
of 117 outputs
Altmetric has tracked 22,776,824 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,560 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.5. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,499 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 117 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.