↓ Skip to main content

Simulation of Cl− Secretion in Epithelial Tissues: New Methodology Estimating Activity of Electro-Neutral Cl− Transporter

Overview of attention for article published in Frontiers in Physiology, December 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Simulation of Cl− Secretion in Epithelial Tissues: New Methodology Estimating Activity of Electro-Neutral Cl− Transporter
Published in
Frontiers in Physiology, December 2015
DOI 10.3389/fphys.2015.00370
Pubmed ID
Authors

Kouhei Sasamoto, Naomi Niisato, Akiyuki Taruno, Yoshinori Marunaka

Abstract

Transcellular Cl(-) secretion is, in general, mediated by two steps; (1) the entry step of Cl(-) into the cytosolic space from the basolateral space across the basolateral membrane by Cl(-) transporters, such as Na(+)-K(+)-2Cl(-) cotransporter (NKCC1, an isoform of NKCC), and (2) the releasing step of Cl(-) from the cytosolic space into the luminal (air) space across the apical membrane via Cl(-) channels, such as cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. Transcellular Cl(-) secretion has been characterized by using various experimental techniques. For example, measurements of short-circuit currents in the Ussing chamber and patch clamp techniques provide us information on transepithelial ion movements via transcellular pathway, transepithelial conductance, activity (open probability) of single channel, and whole cell currents. Although many investigators have tried to clarify roles of Cl(-) channels and transporters located at the apical and basolateral membranes in transcellular Cl(-) secretion, it is still unclear how Cl(-) channels/transporters contribute to transcellular Cl(-) secretion and are regulated by various stimuli such as Ca(2+) and cAMP. In the present study, we simulate transcellular Cl(-) secretion using mathematical models combined with electrophysiological measurements, providing information on contribution of Cl(-) channels/transporters to transcellular Cl(-) secretion, activity of electro-neutral ion transporters and how Cl(-) channels/transporters are regulated.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Professor 3 33%
Student > Ph. D. Student 2 22%
Unspecified 1 11%
Researcher 1 11%
Other 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Medicine and Dentistry 4 44%
Pharmacology, Toxicology and Pharmaceutical Science 1 11%
Unspecified 1 11%
Agricultural and Biological Sciences 1 11%
Computer Science 1 11%
Other 0 0%
Unknown 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 January 2016.
All research outputs
#13,218,410
of 22,836,570 outputs
Outputs from Frontiers in Physiology
#4,318
of 13,604 outputs
Outputs of similar age
#182,949
of 390,595 outputs
Outputs of similar age from Frontiers in Physiology
#57
of 131 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,604 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,595 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.