↓ Skip to main content

Locomotor-Respiratory Coupling in Wheelchair Racing Athletes: A Pilot Study

Overview of attention for article published in Frontiers in Physiology, January 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
5 X users

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Locomotor-Respiratory Coupling in Wheelchair Racing Athletes: A Pilot Study
Published in
Frontiers in Physiology, January 2016
DOI 10.3389/fphys.2016.00011
Pubmed ID
Authors

Claudio Perret, Martin Wenger, Christof A. Leicht, Victoria L. Goosey-Tolfrey

Abstract

In wheelchair racing, respiratory muscles of the rib cage are concomitantly involved in non-ventilatory functions during wheelchair propulsion. However, the relationship between locomotor-respiratory coupling (LRC: the ratio between push and breathing frequency), respiratory parameters and work efficiency is unknown. Therefore, the aim of the present study was to investigate the LRC in wheelchair racers over different race distances. Eight trained and experienced wheelchair racers completed three time-trials over the distances of 400, 800, and 5000 m on a training roller in randomized order. During the time trials, ventilatory and gas exchange variables as well as push frequency were continuously registered to determine possible LRC strategies. Four different coupling ratios were identified, namely 1:1; 2:1, 3:1 as well as a 1:1/2:1 alternating type, respectively. The 2:1 coupling was the most dominant type. The 1:1/2:1 alternating coupling type was found predominantly during the 400 m time-trial. Longer race distances tended to result in an increased coupling ratio (e.g., from 1:1 toward 2:1), and an increase in coupling ratio toward a more efficient respiration was found over the 5000 m distance. A significant correlation (r = 0.80, p < 0.05) between respiratory frequency and the respiratory equivalent for oxygen was found for the 400 m and the 800 m time-trials. These findings suggest that a higher coupling ratio indicates enhanced breathing work efficiency with a concomitant deeper and slower respiration during wheelchair racing. Thus, the selection of an appropriate LRC strategy may help to optimize wheelchair racing performance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 53 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 20%
Researcher 6 11%
Student > Doctoral Student 6 11%
Student > Bachelor 3 6%
Student > Postgraduate 3 6%
Other 10 19%
Unknown 15 28%
Readers by discipline Count As %
Sports and Recreations 12 22%
Medicine and Dentistry 8 15%
Engineering 6 11%
Agricultural and Biological Sciences 3 6%
Biochemistry, Genetics and Molecular Biology 2 4%
Other 6 11%
Unknown 17 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2016.
All research outputs
#7,413,479
of 22,837,982 outputs
Outputs from Frontiers in Physiology
#3,641
of 13,610 outputs
Outputs of similar age
#124,304
of 396,344 outputs
Outputs of similar age from Frontiers in Physiology
#53
of 145 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 13,610 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,344 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 145 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.