↓ Skip to main content

Cross Acclimation between Heat and Hypoxia: Heat Acclimation Improves Cellular Tolerance and Exercise Performance in Acute Normobaric Hypoxia

Overview of attention for article published in Frontiers in Physiology, March 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
123 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cross Acclimation between Heat and Hypoxia: Heat Acclimation Improves Cellular Tolerance and Exercise Performance in Acute Normobaric Hypoxia
Published in
Frontiers in Physiology, March 2016
DOI 10.3389/fphys.2016.00078
Pubmed ID
Authors

Ben J. Lee, Amanda Miller, Rob S. James, Charles D. Thake

Abstract

The potential for cross acclimation between environmental stressors is not well understood. Thus, the aim of this investigation was to determine the effect of fixed-workload heat or hypoxic acclimation on cellular, physiological, and performance responses during post acclimation hypoxic exercise in humans. Twenty-one males (age 22 ± 5 years; stature 1.76 ± 0.07 m; mass 71.8 ± 7.9 kg; [Formula: see text]O2 peak 51 ± 7 mL(.)kg(-1.)min(-1)) completed a cycling hypoxic stress test (HST) and self-paced 16.1 km time trial (TT) before (HST1, TT1), and after (HST2, TT2) a series of 10 daily 60 min training sessions (50% N [Formula: see text]O2 peak) in control (CON, n = 7; 18°C, 35% RH), hypoxic (HYP, n = 7; fraction of inspired oxygen = 0.14, 18°C, 35% RH), or hot (HOT, n = 7; 40°C, 25% RH) conditions. TT performance in hypoxia was improved following both acclimation treatments, HYP (-3:16 ± 3:10 min:s; p = 0.0006) and HOT (-2:02 ± 1:02 min:s; p = 0.005), but unchanged after CON (+0:31 ± 1:42 min:s). Resting monocyte heat shock protein 72 (mHSP72) increased prior to HST2 in HOT (62 ± 46%) and HYP (58 ± 52%), but was unchanged after CON (9 ± 46%), leading to an attenuated mHSP72 response to hypoxic exercise in HOT and HYP HST2 compared to HST1 (p < 0.01). Changes in extracellular hypoxia-inducible factor 1-α followed a similar pattern to those of mHSP72. Physiological strain index (PSI) was attenuated in HOT (HST1 = 4.12 ± 0.58, HST2 = 3.60 ± 0.42; p = 0.007) as a result of a reduced HR (HST1 = 140 ± 14 b.min(-1); HST2 131 ± 9 b.min(-1) p = 0.0006) and Trectal (HST1 = 37.55 ± 0.18°C; HST2 37.45 ± 0.14°C; p = 0.018) during exercise. Whereas PSI did not change in HYP (HST1 = 4.82 ± 0.64, HST2 4.83 ± 0.63). Heat acclimation improved cellular and systemic physiological tolerance to steady state exercise in moderate hypoxia. Additionally we show, for the first time, that heat acclimation improved cycling time trial performance to a magnitude similar to that achieved by hypoxic acclimation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 79 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 123 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 <1%
Unknown 122 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 35 28%
Researcher 15 12%
Student > Master 13 11%
Professor > Associate Professor 6 5%
Professor 6 5%
Other 24 20%
Unknown 24 20%
Readers by discipline Count As %
Sports and Recreations 51 41%
Biochemistry, Genetics and Molecular Biology 10 8%
Agricultural and Biological Sciences 10 8%
Medicine and Dentistry 10 8%
Environmental Science 3 2%
Other 8 7%
Unknown 31 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 136. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 June 2022.
All research outputs
#280,089
of 23,953,397 outputs
Outputs from Frontiers in Physiology
#150
of 14,634 outputs
Outputs of similar age
#5,254
of 303,073 outputs
Outputs of similar age from Frontiers in Physiology
#3
of 140 outputs
Altmetric has tracked 23,953,397 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 14,634 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 303,073 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 140 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.