↓ Skip to main content

NADPH Oxidase-Derived ROS Induced by Chronic Intermittent Hypoxia Mediates Hypersensitivity of Lung Vagal C Fibers in Rats

Overview of attention for article published in Frontiers in Physiology, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
NADPH Oxidase-Derived ROS Induced by Chronic Intermittent Hypoxia Mediates Hypersensitivity of Lung Vagal C Fibers in Rats
Published in
Frontiers in Physiology, May 2016
DOI 10.3389/fphys.2016.00166
Pubmed ID
Authors

Chang-Huan Yang, Wei-Ling Zhuang, Yan-Jhih Shen, Ching Jung Lai, Yu Ru Kou

Abstract

Obstructive sleep apnea (OSA), manifested by exposure to chronic intermittent hypoxia (CIH) and excess production of reactive oxygen species (ROS) in the airways, is associated with hyperreactive airway diseases. ROS, particularly when created by NADPH oxidase, are known to sensitize lung vagal C fibers (LVCFs), which may contribute to airway hypersensitivity pathogenesis. We investigated whether CIH augments the reflex and afferent responses of LVCFs to chemical stimulants and the roles of ROS and NADPH oxidase in such airway hypersensitivity. Rats were exposed to room air (RA) or CIH with/without daily treatment with MnTMPyP (a superoxide anion scavenger), apocynin (an NADPH oxidase inhibitor), or vehicle. At 16 h after their last exposure, intravenous capsaicin, adenosine, or α,β-methylene-ATP evoked an augmented apneic response in anesthetized rats with 14-days CIH exposure, compared to anesthetized rats with 14-days RA exposure. The augmented apneic responses to these LVCF stimulants were abolished by bilateral vagotomy or perivagal capsaicin treatment, which block LVCFs neural conduction and were significantly suppressed by treatment with MnTMPyP or apocynin, but not vehicle. Electrophysiological studies revealed that 14-days CIH exposure potentiated the responses of LVCFs to these stimulants. This effect was inhibited by treatment with MnTMPyP or apocynin treatment and was not seen in rats who received 7-days of CIH exposure. Biochemical analysis indicated that 14-days CIH exposure increased both lung lipid peroxidation, which is indicative of oxidative stress, and expression of the p47(phox) subunit in the membrane fraction of lung tissue, which is an index of NADPH oxidase activation. The former was prevented by treatment with either MnTMPyP or apocynin, while the later was prevented by treatment with apocynin only. These results suggest that 14-days CIH exposure sensitizes LVCFs in rats, leading to an exaggerated reflex and afferent responses to stimulants and that this sensitization is mediated via ROS generated by NADPH oxidase.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 24%
Student > Bachelor 3 18%
Professor > Associate Professor 2 12%
Student > Doctoral Student 1 6%
Researcher 1 6%
Other 1 6%
Unknown 5 29%
Readers by discipline Count As %
Medicine and Dentistry 4 24%
Biochemistry, Genetics and Molecular Biology 2 12%
Agricultural and Biological Sciences 2 12%
Psychology 1 6%
Nursing and Health Professions 1 6%
Other 2 12%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2016.
All research outputs
#18,456,836
of 22,869,263 outputs
Outputs from Frontiers in Physiology
#8,164
of 13,661 outputs
Outputs of similar age
#221,439
of 301,827 outputs
Outputs of similar age from Frontiers in Physiology
#84
of 144 outputs
Altmetric has tracked 22,869,263 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,661 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,827 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 144 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.