↓ Skip to main content

Hypoxia/Reoxygenation Effects on Ion Transport across Rat Colonic Epithelium

Overview of attention for article published in Frontiers in Physiology, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hypoxia/Reoxygenation Effects on Ion Transport across Rat Colonic Epithelium
Published in
Frontiers in Physiology, June 2016
DOI 10.3389/fphys.2016.00247
Pubmed ID
Authors

Sabine Schindele, Ervice Pouokam, Martin Diener

Abstract

Ischemia causes severe damage in the gastrointestinal tract. Therefore, it is interesting to study how the barrier and transport functions of intestinal epithelium change under hypoxia and subsequent reoxygenation. For this purpose we simulated hypoxia and reoxygenation on mucosa-submucosa preparations from rat distal colon in Ussing chambers and on isolated crypts. Hypoxia (N2 gassing for 15 min) induced a triphasic change in short-circuit current (Isc): a transient decrease, an increase and finally a long-lasting fall below the initial baseline. During the subsequent reoxygenation phase, Isc slightly rose to values above the initial baseline. Tissue conductance (Gt) showed a biphasic increase during both the hypoxia and the reoxygenation phases. Omission of Cl(-) or preincubation of the tissue with transport inhibitors revealed that the observed changes in Isc represented changes in Cl(-) secretion. The radical scavenger trolox C reduced the Isc response during hypoxia, but failed to prevent the rise of Isc during reoxygenation. All changes in Isc were Ca(2+)-dependent. Fura-2 experiments at loaded isolated colonic crypts revealed a slow increase of the cytosolic Ca(2+) concentration during hypoxia and the reoxygenation phase, mainly caused by an influx of extracellular Ca(2+). Surprisingly, no changes could be detected in the fluorescence of the superoxide anion-sensitive dye mitosox or the thiol-sensitive dye thiol tracker, suggesting a relative high capacity of the colonic epithelium (with its low O2 partial pressure even under physiological conditions) to deal with enhanced radical production during hypoxia/reoxygenation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Other 1 13%
Student > Doctoral Student 1 13%
Professor 1 13%
Student > Master 1 13%
Researcher 1 13%
Other 0 0%
Unknown 3 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 25%
Pharmacology, Toxicology and Pharmaceutical Science 1 13%
Nursing and Health Professions 1 13%
Agricultural and Biological Sciences 1 13%
Unknown 3 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2016.
All research outputs
#18,464,797
of 22,879,161 outputs
Outputs from Frontiers in Physiology
#8,169
of 13,671 outputs
Outputs of similar age
#267,853
of 353,105 outputs
Outputs of similar age from Frontiers in Physiology
#94
of 175 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,671 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,105 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 175 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.