↓ Skip to main content

Role of Quercetin in Modulating Chloride Transport in the Intestine

Overview of attention for article published in Frontiers in Physiology, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of Quercetin in Modulating Chloride Transport in the Intestine
Published in
Frontiers in Physiology, November 2016
DOI 10.3389/fphys.2016.00549
Pubmed ID
Authors

Bo Yu, Yu Jiang, Lingling Jin, Tonghui Ma, Hong Yang

Abstract

Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs) are the main chloride channels in the luminal membrane of enterocytes. These transmembrane proteins play important roles in many physiological processes. In this study, we have identified a flavonoid quercetin as a modulator of CaCC chloride channel activity. Fluorescence quenching assay showed that quercetin activated Cl(-) transport in a dose-dependent manner, with EC50 ~37 μM. Short-circuit current analysis confirmed that quercetin activated CaCC-mediated Cl(-) currents in HT-29 cells that can be abolished by CaCCinh-A01. Ex vivo studies indicated that application of quercetin to mouse ileum and colon on serosal side resulted in activation of CFTR and CaCC-mediated Cl(-) currents. Notably, we found that quercetin exhibited inhibitory effect against ANO1 chloride channel activity in ANO1-expressing FRT cells and decreased mouse intestinal motility. Quercetin-stimulated short-circuit currents in mouse ileum was multi-component, which included elevation of Ca(2+) concentration through L-type calcium channel and activation of basolateral NKCC, Na(+)/K(+)-ATPase, and K(+) channels. In vivo studies further revealed that quercetin promoted fluid secretion in mouse ileum. The modulatory effect of quercetin on CaCC chloirde channels may therefore represent a potential therapeutic strategy for treating CaCC-related diseases like constipation, secretory diarrhea and hypertension. The inverse effects of quercetin on CaCCs provided evidence that ANO1 and intestinal epithelial CaCCs are different calcium-activated chloride channels.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 38%
Student > Master 2 25%
Researcher 1 13%
Student > Ph. D. Student 1 13%
Unknown 1 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 38%
Pharmacology, Toxicology and Pharmaceutical Science 2 25%
Agricultural and Biological Sciences 1 13%
Medicine and Dentistry 1 13%
Unknown 1 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2016.
All research outputs
#20,355,479
of 22,903,988 outputs
Outputs from Frontiers in Physiology
#9,425
of 13,693 outputs
Outputs of similar age
#348,925
of 415,120 outputs
Outputs of similar age from Frontiers in Physiology
#142
of 206 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,693 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,120 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 206 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.