↓ Skip to main content

Pre-dive Whole-Body Vibration Better Reduces Decompression-Induced Vascular Gas Emboli than Oxygenation or a Combination of Both

Overview of attention for article published in Frontiers in Physiology, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pre-dive Whole-Body Vibration Better Reduces Decompression-Induced Vascular Gas Emboli than Oxygenation or a Combination of Both
Published in
Frontiers in Physiology, November 2016
DOI 10.3389/fphys.2016.00586
Pubmed ID
Authors

Costantino Balestra, Sigrid Theunissen, Virginie Papadopoulou, Cedric Le Mener, Peter Germonpré, François Guerrero, Pierre Lafère

Abstract

Purpose: Since non-provocative dive profiles are no guarantor of protection against decompression sickness, novel means including pre-dive "preconditioning" interventions, are proposed for its prevention. This study investigated and compared the effect of pre-dive oxygenation, pre-dive whole body vibration or a combination of both on post-dive bubble formation. Methods: Six healthy volunteers performed 6 no-decompression dives each, to a depth of 33 mfw for 20 min (3 control dives without preconditioning and 1 of each preconditioning protocol) with a minimum interval of 1 week between each dive. Post-dive bubbles were counted in the precordium by two-dimensional echocardiography, 30 and 90 min after the dive, with and without knee flexing. Each diver served as his own control. Results: Vascular gas emboli (VGE) were systematically observed before and after knee flexing at each post-dive measurement. Compared to the control dives, we observed a decrease in VGE count of 23.8 ± 7.4% after oxygen breathing (p < 0.05), 84.1 ± 5.6% after vibration (p < 0.001), and 55.1 ± 9.6% after vibration combined with oxygen (p < 0.001). The difference between all preconditioning methods was statistically significant. Conclusions: The precise mechanism that induces the decrease in post-dive VGE and thus makes the diver more resistant to decompression stress is still not known. However, it seems that a pre-dive mechanical reduction of existing gas nuclei might best explain the beneficial effects of this strategy. The apparent non-synergic effect of oxygen and vibration has probably to be understood because of different mechanisms involved.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 16%
Student > Master 7 13%
Other 4 7%
Student > Bachelor 4 7%
Student > Doctoral Student 3 5%
Other 4 7%
Unknown 24 44%
Readers by discipline Count As %
Medicine and Dentistry 16 29%
Engineering 4 7%
Agricultural and Biological Sciences 2 4%
Nursing and Health Professions 2 4%
Social Sciences 2 4%
Other 5 9%
Unknown 24 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 December 2017.
All research outputs
#18,483,671
of 22,903,988 outputs
Outputs from Frontiers in Physiology
#8,176
of 13,694 outputs
Outputs of similar age
#304,256
of 415,970 outputs
Outputs of similar age from Frontiers in Physiology
#140
of 220 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,694 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,970 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 220 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.