↓ Skip to main content

Exhaustive Exercise Alters Thinking Times in a Tower of London Task in a Time-Dependent Manner

Overview of attention for article published in Frontiers in Physiology, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exhaustive Exercise Alters Thinking Times in a Tower of London Task in a Time-Dependent Manner
Published in
Frontiers in Physiology, January 2017
DOI 10.3389/fphys.2016.00694
Pubmed ID
Authors

Philipp Zimmer, Stephan Binnebößel, Wilhelm Bloch, Sven T. Hübner, Alexander Schenk, Hans-Georg Predel, Peter Wright, Christian Stritt, Max Oberste

Abstract

Purpose: In contrast to other aspects of executive functions, acute exercise-induced alterations in planning are poorly investigated. While only few studies report improved planning performances after exercise, even less is known about their time course after exhaustive exercise. Methods: One hundred and nineteen healthy adults performed the Tower of London (ToL) task at baseline, followed by a graded exercise test (GXT). Participants were subsequently randomized into one of four groups (immediately, 30, 60, and 90 min after the GXT) to repeat the ToL. Main outcomes of the ToL were planning (number of tasks completed in the minimum number of moves), solutions (correct responses independent of the given number of moves) as well as thinking times (time between presentation of each problem and first action) for tasks with varying difficulty (four-, five,- and six-move problems). Blood lactate levels were analyzed as a potential mediator. Results: No effect of exercise on planning could be detected. In contrast to complex problem conditions, median thinking times deteriorated significantly in the immediately after GXT tested group in less challenging problem conditions (four-move problems: p = 0.001, F = 5.933, df = 3; five-move problems: p = 0.005, F = 4.548, df = 3). Decreased lactate elimination rates were associated with impaired median thinking times across all groups ΔMTT4-6 (p = 0.001, r = -0.309), ΔMTT4 (p < 0.001, r = -0.367), and ΔMTT5 (p = 0.001, r = -0.290). Conclusion: These results suggest that planning does not improve within 90 min after exhaustive exercise. In line with previous research, revealing a negative impact of exhaustive exercise on memory and attention, our study extends this knowledge of exercise-induced alterations in cognitive functioning as thinking times as subcomponents of planning are negatively affected immediately after exercise. This is further associated with peripheral lactate levels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 17%
Researcher 7 13%
Student > Doctoral Student 6 11%
Student > Ph. D. Student 5 9%
Student > Master 5 9%
Other 10 19%
Unknown 11 21%
Readers by discipline Count As %
Sports and Recreations 11 21%
Psychology 7 13%
Neuroscience 4 8%
Medicine and Dentistry 4 8%
Agricultural and Biological Sciences 3 6%
Other 6 11%
Unknown 18 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 January 2017.
All research outputs
#17,863,974
of 22,940,083 outputs
Outputs from Frontiers in Physiology
#7,194
of 13,705 outputs
Outputs of similar age
#294,931
of 422,128 outputs
Outputs of similar age from Frontiers in Physiology
#125
of 230 outputs
Altmetric has tracked 22,940,083 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,705 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,128 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 230 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.