↓ Skip to main content

Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects

Overview of attention for article published in Frontiers in Physiology, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects
Published in
Frontiers in Physiology, March 2017
DOI 10.3389/fphys.2017.00124
Pubmed ID
Authors

Rodolfo Briones, Camilo Aponte-Santamaría, Bert L. de Groot

Abstract

Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers separated by a layer of annular lipids.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 25%
Researcher 6 15%
Professor 5 13%
Student > Master 5 13%
Student > Bachelor 4 10%
Other 6 15%
Unknown 4 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 23%
Chemistry 7 18%
Agricultural and Biological Sciences 6 15%
Nursing and Health Professions 2 5%
Physics and Astronomy 2 5%
Other 9 23%
Unknown 5 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 March 2017.
All research outputs
#20,408,464
of 22,958,253 outputs
Outputs from Frontiers in Physiology
#9,438
of 13,712 outputs
Outputs of similar age
#270,698
of 310,726 outputs
Outputs of similar age from Frontiers in Physiology
#161
of 221 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,712 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,726 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 221 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.