↓ Skip to main content

Cholera Toxin Induces Sustained Hyperexcitability in Myenteric, but Not Submucosal, AH Neurons in Guinea Pig Jejunum

Overview of attention for article published in Frontiers in Physiology, April 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page
f1000
1 research highlight platform

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cholera Toxin Induces Sustained Hyperexcitability in Myenteric, but Not Submucosal, AH Neurons in Guinea Pig Jejunum
Published in
Frontiers in Physiology, April 2017
DOI 10.3389/fphys.2017.00254
Pubmed ID
Authors

Katerina Koussoulas, Rachel M. Gwynne, Jaime P. P. Foong, Joel C. Bornstein

Abstract

Background and Aims: Cholera toxin (CT)-induced hypersecretion requires activation of secretomotor pathways in the enteric nervous system (ENS). AH neurons, which have been identified as a population of intrinsic sensory neurons (ISNs), are a source of excitatory input to the secretomotor pathways. We therefore examined effects of CT in the intestinal lumen on myenteric and submucosal AH neurons. Methods: Isolated segments of guinea pig jejunum were incubated for 90 min with saline plus CT (12.5 μg/ml) or CT + neurotransmitter antagonist, or CT + tetrodotoxin (TTX) in their lumen. After washing CT away, submucosal or myenteric plexus preparations were dissected keeping circumferentially adjacent mucosa intact. Submucosal AH neurons were impaled adjacent to intact mucosa and myenteric AH neurons were impaled adjacent to, more than 5 mm from, and in the absence of intact mucosa. Neuronal excitability was monitored by injecting 500 ms current pulses through the recording electrode. Results: After CT pre-treatment, excitability of myenteric AH neurons adjacent to intact mucosa (n = 29) was greater than that of control neurons (n = 24), but submucosal AH neurons (n = 33, control n = 27) were unaffected. CT also induced excitability increases in myenteric AH neurons impaled distant from the mucosa (n = 6) or in its absence (n = 5). Coincubation with tetrodotoxin or SR142801 (NK3 receptor antagonist), but not SR140333 (NK1 antagonist) or granisetron (5-HT3 receptor antagonist) prevented the increased excitability induced by CT. Increased excitability was associated with a reduction in the characteristic AHP and an increase in the ADP of these neurons, but not a change in the hyperpolarization-activated inward current, Ih . Conclusions: CT increases excitability of myenteric, but not submucosal, AH neurons. This is neurally mediated and depends on NK3, but not 5-HT3 receptors. Therefore, CT may act to amplify the secretomotor response to CT via an increase in the activity of the afferent limb of the enteric reflex circuitry.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 15%
Other 1 8%
Professor 1 8%
Student > Ph. D. Student 1 8%
Professor > Associate Professor 1 8%
Other 0 0%
Unknown 7 54%
Readers by discipline Count As %
Medicine and Dentistry 2 15%
Pharmacology, Toxicology and Pharmaceutical Science 1 8%
Neuroscience 1 8%
Agricultural and Biological Sciences 1 8%
Unknown 8 62%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2017.
All research outputs
#7,526,794
of 22,968,808 outputs
Outputs from Frontiers in Physiology
#3,741
of 13,720 outputs
Outputs of similar age
#119,361
of 309,813 outputs
Outputs of similar age from Frontiers in Physiology
#72
of 246 outputs
Altmetric has tracked 22,968,808 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,720 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,813 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 246 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.