↓ Skip to main content

Role of Intestinal LXRα in Regulating Post-prandial Lipid Excursion and Diet-Induced Hypercholesterolemia and Hepatic Lipid Accumulation

Overview of attention for article published in Frontiers in Physiology, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of Intestinal LXRα in Regulating Post-prandial Lipid Excursion and Diet-Induced Hypercholesterolemia and Hepatic Lipid Accumulation
Published in
Frontiers in Physiology, May 2017
DOI 10.3389/fphys.2017.00280
Pubmed ID
Authors

Tibiábin Benítez-Santana, Sarah E. Hugo, Amnon Schlegel

Abstract

Post-prandial hyperlipidemia has emerged as a cardiovascular risk factor with limited therapeutic options. The Liver X receptors (Lxrs) are nuclear hormone receptors that regulate cholesterol elimination. Knowledge of their role in regulating the absorption and handling of dietary fats is incomplete. The purpose of this study was to determine the role of intestinal Lxrα in post-prandial intestinal lipid transport. Using Lxrα knockout (nr1h3(-/-)) and intestine-limited Lxrα over-expressing [Tg(fabp2a:EGFP-nr1h3)] zebrafish strains, we measured post-prandial lipid excursion with live imaging in larvae and physiological methods in adults. We also conducted a long-term high-cholesterol dietary challenge in adults to examine the chronic effect of modulating nr1h3 gene dose on the development of hypercholesterolemia and hepatic lipid accumulation. Over-expression of Lxrα in the intestine delays the transport of ingested lipids in larvae, while deletion of Lxrα increases the rate of lipid transport. Pre-treating wildtype larvae with the liver-sparing Lxr agonist hyodeoxycholic acid also delayed the rate of intestinal lipid transport in larvae. In adult males, deletion of Lxrα accelerates intestinal transport of ingested lipids. Adult females showed higher plasma Lipoprotein lipase (Lpl) activity compared to males, and lower post-gavage blood triacylglycerol (TAG) excursion. Despite the sexually dimorphic effect on acute intestinal lipid handling, Tg(fabp2a:EGFP-nr1h3) adults of both sexes are protected from high cholesterol diet (HCD)-induced hepatic lipid accumulation, while nr1h3(-/-) mutants are sensitive to the effects of HCD challenge. These data indicate that intestinal Lxr activity dampens the pace of intestinal lipid transport cell-autonomously. Selective activation of intestinal Lxrα holds therapeutic promise.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 19%
Other 2 13%
Student > Master 2 13%
Student > Ph. D. Student 2 13%
Student > Doctoral Student 1 6%
Other 2 13%
Unknown 4 25%
Readers by discipline Count As %
Medicine and Dentistry 4 25%
Biochemistry, Genetics and Molecular Biology 3 19%
Agricultural and Biological Sciences 1 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Computer Science 1 6%
Other 1 6%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 May 2017.
All research outputs
#20,420,242
of 22,971,207 outputs
Outputs from Frontiers in Physiology
#9,441
of 13,720 outputs
Outputs of similar age
#270,473
of 310,718 outputs
Outputs of similar age from Frontiers in Physiology
#190
of 255 outputs
Altmetric has tracked 22,971,207 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,720 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,718 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 255 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.