↓ Skip to main content

Cardiac Subtype-Specific Modeling of Kv1.5 Ion Channel Deficiency Using Human Pluripotent Stem Cells

Overview of attention for article published in Frontiers in Physiology, July 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
7 X users

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cardiac Subtype-Specific Modeling of Kv1.5 Ion Channel Deficiency Using Human Pluripotent Stem Cells
Published in
Frontiers in Physiology, July 2017
DOI 10.3389/fphys.2017.00469
Pubmed ID
Authors

Maike Marczenke, Ilaria Piccini, Isabella Mengarelli, Jakob Fell, Albrecht Röpke, Guiscard Seebohm, Arie O. Verkerk, Boris Greber

Abstract

The ultrarapid delayed rectifier K(+) current (IKur), mediated by Kv1.5 channels, constitutes a key component of the atrial action potential. Functional mutations in the underlying KCNA5 gene have been shown to cause hereditary forms of atrial fibrillation (AF). Here, we combine targeted genetic engineering with cardiac subtype-specific differentiation of human induced pluripotent stem cells (hiPSCs) to explore the role of Kv1.5 in atrial hiPSC-cardiomyocytes. CRISPR/Cas9-mediated mutagenesis of integration-free hiPSCs was employed to generate a functional KCNA5 knockout. This model as well as isogenic wild-type control hiPSCs could selectively be differentiated into ventricular or atrial cardiomyocytes at high efficiency, based on the specific manipulation of retinoic acid signaling. Investigation of electrophysiological properties in Kv1.5-deficient cardiomyocytes compared to isogenic controls revealed a strictly atrial-specific disease phentoype, characterized by cardiac subtype-specific field and action potential prolongation and loss of 4-aminopyridine sensitivity. Atrial Kv1.5-deficient cardiomyocytes did not show signs of arrhythmia under adrenergic stress conditions or upon inhibiting additional types of K(+) current. Exposure of bulk cultures to carbachol lowered beating frequencies and promoted chaotic spontaneous beating in a stochastic manner. Low-frequency, electrical stimulation in single cells caused atrial and mutant-specific early afterdepolarizations, linking the loss of KCNA5 function to a putative trigger mechanism in familial AF. These results clarify for the first time the role of Kv1.5 in atrial hiPSC-cardiomyocytes and demonstrate the feasibility of cardiac subtype-specific disease modeling using engineered hiPSCs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 19%
Researcher 9 14%
Student > Master 8 13%
Student > Bachelor 7 11%
Student > Doctoral Student 4 6%
Other 9 14%
Unknown 14 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 22%
Agricultural and Biological Sciences 11 17%
Medicine and Dentistry 8 13%
Pharmacology, Toxicology and Pharmaceutical Science 4 6%
Materials Science 3 5%
Other 6 10%
Unknown 17 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 July 2017.
All research outputs
#12,850,266
of 22,985,065 outputs
Outputs from Frontiers in Physiology
#3,940
of 13,730 outputs
Outputs of similar age
#145,515
of 313,520 outputs
Outputs of similar age from Frontiers in Physiology
#95
of 267 outputs
Altmetric has tracked 22,985,065 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,730 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,520 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 267 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.