↓ Skip to main content

Beyond the Map: Enamel Distribution Characterized from 3D Dental Topography

Overview of attention for article published in Frontiers in Physiology, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Beyond the Map: Enamel Distribution Characterized from 3D Dental Topography
Published in
Frontiers in Physiology, July 2017
DOI 10.3389/fphys.2017.00524
Pubmed ID
Authors

Ghislain Thiery, Vincent Lazzari, Anusha Ramdarshan, Franck Guy

Abstract

Enamel thickness is highly susceptible to natural selection because thick enamel may prevent tooth failure. Consequently, it has been suggested that primates consuming stress-limited food on a regular basis would have thick-enameled molars in comparison to primates consuming soft food. Furthermore, the spatial distribution of enamel over a single tooth crown is not homogeneous, and thick enamel is expected to be more unevenly distributed in durophagous primates. Still, a proper methodology to quantitatively characterize enamel 3D distribution and test this hypothesis is yet to be developed. Unworn to slightly worn upper second molars belonging to 32 species of anthropoid primates and corresponding to a wide range of diets were digitized using high resolution microcomputed tomography. In addition, their durophagous ability was scored from existing literature. 3D average and relative enamel thickness were computed based on the volumetric reconstruction of the enamel cap. Geometric estimates of their average and relative enamel-dentine distance were also computed using 3D dental topography. Both methods gave different estimations of average and relative enamel thickness. This study also introduces pachymetric profiles, a method inspired from traditional topography to graphically characterize thick enamel distribution. Pachymetric profiles and topographic maps of enamel-dentine distance are combined to assess the evenness of thick enamel distribution. Both pachymetric profiles and topographic maps indicate that thick enamel is not significantly more unevenly distributed in durophagous species, except in Cercopithecidae. In this family, durophagous species such as mangabeys are characterized by an uneven thick enamel and high pachymetric profile slopes at the average enamel thickness, whereas non-durophagous species such as colobine monkeys are not. These results indicate that the distribution of thick enamel follows different patterns across anthropoids. Primates might have developed different durophagous strategies to answer the selective pressure exerted by stress-limited food.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 26%
Student > Ph. D. Student 9 26%
Student > Master 6 17%
Student > Bachelor 4 11%
Student > Doctoral Student 1 3%
Other 2 6%
Unknown 4 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 23%
Medicine and Dentistry 6 17%
Earth and Planetary Sciences 4 11%
Engineering 4 11%
Arts and Humanities 3 9%
Other 6 17%
Unknown 4 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 July 2017.
All research outputs
#20,436,330
of 22,990,068 outputs
Outputs from Frontiers in Physiology
#9,456
of 13,740 outputs
Outputs of similar age
#274,431
of 314,579 outputs
Outputs of similar age from Frontiers in Physiology
#200
of 272 outputs
Altmetric has tracked 22,990,068 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,740 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,579 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 272 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.