↓ Skip to main content

The Role of Sulfide Oxidation Impairment in the Pathogenesis of Primary CoQ Deficiency

Overview of attention for article published in Frontiers in Physiology, July 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Role of Sulfide Oxidation Impairment in the Pathogenesis of Primary CoQ Deficiency
Published in
Frontiers in Physiology, July 2017
DOI 10.3389/fphys.2017.00525
Pubmed ID
Authors

Catarina M. Quinzii, Marta Luna-Sanchez, Marcello Ziosi, Agustin Hidalgo-Gutierrez, Giulio Kleiner, Luis C. Lopez

Abstract

Coenzyme Q (CoQ) is a lipid present in all cell membranes. One of the multiple metabolic functions of CoQ is to transport electrons in the reaction catalyzed by sulfide:quinone oxidoreductase (SQOR), the first enzyme of the oxidation pathway of sulfides (hydrogen sulfide, H2S). Early evidence of a defect in the metabolism of H2S in primary CoQ deficiency came from yeast studies in Schizosaccharomyces pombe strains defective for dps1 and ppt1 (homologs of PDSS1 and COQ2, respectively), which have H2S accumulation. Our recent studies in human skin fibroblasts and in murine models of primary CoQ deficiency show that, also in mammals, decreased CoQ levels cause impairment of H2S oxidation. Patient fibroblasts carrying different mutations in genes encoding proteins involved in CoQ biosynthesis show reduced SQOR activity and protein levels proportional to the levels of CoQ. In Pdss2(kd/kd) mice, kidney, the only organ clinically affected, shows reduced SQOR levels and downstream enzymes, accumulation of H2S, and glutathione depletion. Pdss2(kd/kd) mice have also low levels of thiosulfate in plasma and urine, and increased C4-C6 acylcarnitines in blood, due to inhibition of short-chain acyl-CoA dehydrogenase. Also in Coq9(R239X) mice, the symptomatic organ, cerebrum, shows accumulation of H2S, reduced SQOR, increase in thiosulfate sulfurtransferase and sulfite oxidase, and reduction in the levels of glutathione and glutathione enzymes, leading to alteration of the biosynthetic pathways of glutamate, serotonin, and catecholamines. Coq9(R239X) mice have also reduced blood pressure, possible consequence of H2S-induced vasorelaxation. Since liver is not clinically affected in Pdss2 and Coq9 mutant mice, the effects of the impairment of H2S oxidation in this organ were not investigated, despite its critical role in metabolism. In conclusion, in vitro and in vivo studies of CoQ deficient models provide evidence of tissue-specific H2S oxidation impairment, an additional pathomechanism that should be considered in the understanding and treatment of primary CoQ deficiency.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 25%
Student > Master 6 12%
Researcher 6 12%
Student > Doctoral Student 3 6%
Professor > Associate Professor 2 4%
Other 6 12%
Unknown 16 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 37%
Agricultural and Biological Sciences 6 12%
Environmental Science 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Unspecified 2 4%
Other 3 6%
Unknown 16 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2017.
All research outputs
#18,565,641
of 22,994,508 outputs
Outputs from Frontiers in Physiology
#8,210
of 13,752 outputs
Outputs of similar age
#242,997
of 316,999 outputs
Outputs of similar age from Frontiers in Physiology
#180
of 277 outputs
Altmetric has tracked 22,994,508 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,752 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,999 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 277 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.