↓ Skip to main content

Combined Interval Training and Post-exercise Nutrition in Type 2 Diabetes: A Randomized Control Trial

Overview of attention for article published in Frontiers in Physiology, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
21 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
150 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Combined Interval Training and Post-exercise Nutrition in Type 2 Diabetes: A Randomized Control Trial
Published in
Frontiers in Physiology, July 2017
DOI 10.3389/fphys.2017.00528
Pubmed ID
Authors

Monique E. Francois, Cody Durrer, Kevin J. Pistawka, Frank A. Halperin, Courtney Chang, Jonathan P. Little

Abstract

Background: High-intensity interval training (HIIT) can improve several aspects of cardiometabolic health. Previous studies have suggested that adaptations to exercise training can be augmented with post-exercise milk or protein consumption, but whether this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2 diabetes is unknown. Objective: To determine if the addition of a post-exercise milk or protein beverage to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in individuals with type 2 diabetes. Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated type 2 diabetes were randomized to one of three nutritional beverages (500 mL skim-milk, macronutrient control, or flavored water placebo) consumed after exercise (3 days/week) during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity intervals separated by 1-min low-intensity recovery periods. Two sessions per week were cardio-based (at ~90% of heart rate max) and one session involved resistance-based exercises (at RPE of 5-6; CR-10 scale) in the same interval pattern. Continuous glucose monitoring (CGM), glycosylated hemoglobin (HbA1c), body composition (dual-energy X-ray absorptiometry), cardiorespiratory fitness ([Formula: see text]), blood pressure, and endothelial function (%FMD) were measured before and after the intervention. Results: There were significant main effects of time (all p < 0.05) but no difference between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (-0.5 ± 1.1 mmol/L), HbA1c (-0.2 ± 0.4%), percent body fat (-0.8 ± 1.6%), and lean mass (+1.1 ± 2.8 kg). Similarly, [Formula: see text] (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were increased, and mean arterial blood pressure reduced (-6 ± 7 mmHg), after 12 weeks of HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11). Conclusion: High-intensity interval training is a potent stimulus for improving several important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of HIIT are not augmented by the addition of post-exercise protein.

X Demographics

X Demographics

The data shown below were collected from the profiles of 21 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 150 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 150 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 23 15%
Student > Bachelor 19 13%
Student > Ph. D. Student 12 8%
Student > Doctoral Student 11 7%
Researcher 9 6%
Other 30 20%
Unknown 46 31%
Readers by discipline Count As %
Sports and Recreations 35 23%
Medicine and Dentistry 23 15%
Nursing and Health Professions 13 9%
Agricultural and Biological Sciences 8 5%
Social Sciences 4 3%
Other 15 10%
Unknown 52 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 October 2017.
All research outputs
#2,653,152
of 24,717,692 outputs
Outputs from Frontiers in Physiology
#1,443
of 15,186 outputs
Outputs of similar age
#48,696
of 321,532 outputs
Outputs of similar age from Frontiers in Physiology
#40
of 277 outputs
Altmetric has tracked 24,717,692 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 15,186 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,532 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 277 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.