↓ Skip to main content

Balanced Noise-Evoked Excitation and Inhibition in Awake Mice CA3

Overview of attention for article published in Frontiers in Physiology, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Balanced Noise-Evoked Excitation and Inhibition in Awake Mice CA3
Published in
Frontiers in Physiology, November 2017
DOI 10.3389/fphys.2017.00931
Pubmed ID
Authors

Ningqian Wang, Xiong Gan, Yun Liu, Zhongju Xiao

Abstract

The hippocampus is known as a neuronal structure involved in learning, memory and spatial navigation using multi-sensory cues. However, the basic features of its response to acoustic stimuli without any behavioral tasks (conditioning) remains poorly studied. Here, we investigated the CA3 response to auditory stimuli using in vivo loose-patch recordings in awake and anesthetized C57 mice. Different acoustic stimuli in addition to broadband noise such as click, FM sound and pure tone were applied to test the response of CA3 in awake animals. It was found that the wakefulness of the animal is important for the recorded neurons to respond. The CA3 neurons showed a stronger response to broadband noise rather than the other type of stimuli which suggested that auditory information arrived at CA3 via broadband pathways. Finally, we investigated the excitatory and inhibitory inputs to CA3 neurons by using in vivo whole-cell voltage-clamp techniques with the membrane potential holding at -70 and 0 mV, respectively. In awake animals, the excitatory and inhibitory inputs CA3 neurons receive induced by noise are balanced by showing stable intervals and proportional changes of their latencies and peak amplitudes as a function of the stimulation intensities.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 70%
Professor > Associate Professor 1 10%
Student > Bachelor 1 10%
Student > Master 1 10%
Readers by discipline Count As %
Neuroscience 4 40%
Agricultural and Biological Sciences 3 30%
Social Sciences 1 10%
Medicine and Dentistry 1 10%
Unknown 1 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 November 2017.
All research outputs
#20,452,930
of 23,008,860 outputs
Outputs from Frontiers in Physiology
#9,478
of 13,760 outputs
Outputs of similar age
#372,570
of 437,733 outputs
Outputs of similar age from Frontiers in Physiology
#231
of 339 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,760 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,733 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 339 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.