↓ Skip to main content

Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect

Overview of attention for article published in Frontiers in Physiology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect
Published in
Frontiers in Physiology, January 2018
DOI 10.3389/fphys.2017.01108
Pubmed ID
Authors

Devishree Krishnan, Wanling Pan, Megan R. Beggs, Francesco Trepiccione, Régine Chambrey, Dominique Eladari, Emmanuelle Cordat, Henrik Dimke, R. Todd Alexander

Abstract

Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 12%
Student > Doctoral Student 2 12%
Student > Master 2 12%
Researcher 2 12%
Student > Ph. D. Student 1 6%
Other 3 18%
Unknown 5 29%
Readers by discipline Count As %
Medicine and Dentistry 3 18%
Biochemistry, Genetics and Molecular Biology 3 18%
Environmental Science 1 6%
Neuroscience 1 6%
Chemistry 1 6%
Other 0 0%
Unknown 8 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 February 2018.
All research outputs
#14,963,216
of 23,015,156 outputs
Outputs from Frontiers in Physiology
#5,737
of 13,770 outputs
Outputs of similar age
#255,788
of 441,866 outputs
Outputs of similar age from Frontiers in Physiology
#130
of 308 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,770 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,866 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 308 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.