↓ Skip to main content

Collective Sensing of β-Cells Generates the Metabolic Code

Overview of attention for article published in Frontiers in Physiology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Collective Sensing of β-Cells Generates the Metabolic Code
Published in
Frontiers in Physiology, January 2018
DOI 10.3389/fphys.2018.00031
Pubmed ID
Authors

Dean Korošak, Marjan Slak Rupnik

Abstract

Major part of a pancreatic islet is composed of β-cells that secrete insulin, a key hormone regulating influx of nutrients into all cells in a vertebrate organism to support nutrition, housekeeping or energy storage. β-cells constantly communicate with each other using both direct, short-range interactions through gap junctions, and paracrine long-range signaling. However, how these cell interactions shape collective sensing and cell behavior in islets that leads to insulin release is unknown. When stimulated by specific ligands, primarily glucose, β-cells collectively respond with expression of a series of transient Ca2+ changes on several temporal scales. Here we reanalyze a set of Ca2+ spike trains recorded in acute rodent pancreatic tissue slice under physiological conditions. We found strongly correlated states of co-spiking cells coexisting with mostly weak pairwise correlations widespread across the islet. Furthermore, the collective Ca2+ spiking activity in islet shows on-off intermittency with scaling of spiking amplitudes, and stimulus dependent autoassociative memory features. We use a simple spin glass-like model for the functional network of a β-cell collective to describe these findings and argue that Ca2+ spike trains produced by collective sensing of β-cells constitute part of the islet metabolic code that regulates insulin release and limits the islet size.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 26%
Student > Bachelor 4 21%
Professor 2 11%
Student > Doctoral Student 1 5%
Student > Ph. D. Student 1 5%
Other 3 16%
Unknown 3 16%
Readers by discipline Count As %
Medicine and Dentistry 5 26%
Engineering 3 16%
Biochemistry, Genetics and Molecular Biology 2 11%
Physics and Astronomy 2 11%
Neuroscience 2 11%
Other 2 11%
Unknown 3 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 June 2018.
All research outputs
#14,090,698
of 23,018,998 outputs
Outputs from Frontiers in Physiology
#4,952
of 13,772 outputs
Outputs of similar age
#232,828
of 441,261 outputs
Outputs of similar age from Frontiers in Physiology
#116
of 309 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,772 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,261 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 309 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.