↓ Skip to main content

Phosphodiesterase-5 Inhibition Alleviates Pulmonary Hypertension and Basal Lamina Thickening in Rats Challenged by Chronic Hypoxia

Overview of attention for article published in Frontiers in Physiology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phosphodiesterase-5 Inhibition Alleviates Pulmonary Hypertension and Basal Lamina Thickening in Rats Challenged by Chronic Hypoxia
Published in
Frontiers in Physiology, March 2018
DOI 10.3389/fphys.2018.00289
Pubmed ID
Authors

Coline Nydegger, Carla Martinelli, Fabiano Di Marco, Gaetano Bulfamante, Ludwig von Segesser, Piergiorgio Tozzi, Michele Samaja, Giuseppina Milano

Abstract

Background: Hypoxia represents both an outcome of cardiopulmonary diseases and a trigger for severe pulmonary complications as pulmonary hypertension. Because nitric oxide (NO) is a critical mediator in the development of pulmonary hypertension, the modulators of its downstream function may become target of pharmacological interventions aimed at alleviating the impact of this condition. Here, we investigate the effects of an early administration of phosphodiesterase-5 inhibitor in rats where pulmonary artery hypertension was induced by chronic exposure to hypoxia. Methods: Rats were divided into three groups: normoxic control, hypoxic with no treatments (2 weeks breathing an atmosphere containing 10% oxygen), and hypoxic treated with sildenafil (1.4 mg/Kg per day in 0.3 mL i.p.). After sacrifice, hearts and lungs were removed and harvested for analyses. Results: Sildenafil reduced hypoxia-induced right ventricle hypertrophy without effects in lung hypertrophy, and blunted the increase in right ventricle pressure without effects on left ventricle pressure. Furthermore, the NO-producing systems (i.e., the phosphorylation of the endothelial isoforms of NO synthase that was measured in both myocardial and lung tissues), and the blood NO stores (i.e., the plasma level of nitrates and nitrites) were up-regulated by sildenafil. We did not find significant effects of sildenafil on weight and hemoglobin concentration. Morphological analysis in lung biopsies revealed that 2-week hypoxia increased the frequency of small pulmonary vessels leaving large vessels unaffected. Finally, ultrastructural analysis showed that sildenafil down-regulated the hypoxia-induced increase in the thickness of the pulmonary basal lamina. Conclusions: In this model of pulmonary hypertension, sildenafil contrasts the negative effects of hypoxia on pulmonary vascular and right ventricle remodeling. This action does not only encompass the canonical vasomodulatory effect, but involves several biochemical pathways. Although the human pathological model is certainly more complex than that described here (for example, the inflammatory issue), the potential role of phosphodiesterase-5 for long-term treatment, and perhaps prevention, of pulmonary hypertension is worthy of investigation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 17%
Student > Master 3 17%
Researcher 2 11%
Lecturer 1 6%
Professor 1 6%
Other 3 17%
Unknown 5 28%
Readers by discipline Count As %
Medicine and Dentistry 5 28%
Agricultural and Biological Sciences 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Biochemistry, Genetics and Molecular Biology 1 6%
Environmental Science 1 6%
Other 3 17%
Unknown 5 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2018.
All research outputs
#14,379,536
of 23,028,364 outputs
Outputs from Frontiers in Physiology
#5,337
of 13,775 outputs
Outputs of similar age
#187,317
of 330,033 outputs
Outputs of similar age from Frontiers in Physiology
#180
of 418 outputs
Altmetric has tracked 23,028,364 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,775 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,033 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 418 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.