↓ Skip to main content

LiverSex Computational Model: Sexual Aspects in Hepatic Metabolism and Abnormalities

Overview of attention for article published in Frontiers in Physiology, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
LiverSex Computational Model: Sexual Aspects in Hepatic Metabolism and Abnormalities
Published in
Frontiers in Physiology, April 2018
DOI 10.3389/fphys.2018.00360
Pubmed ID
Authors

Tanja Cvitanović Tomaš, Žiga Urlep, Miha Moškon, Miha Mraz, Damjana Rozman

Abstract

The liver is to date the best example of a sexually dimorphic non-reproductive organ. Over 1,000 genes are differentially expressed between sexes indicating that female and male livers are two metabolically distinct organs. The spectrum of liver diseases is broad and is usually prevalent in one or the other sex, with different contributing genetic and environmental factors. It is thus difficult to predict individual's disease outcomes and treatment options. Systems approaches including mathematical modeling can aid importantly in understanding the multifactorial liver disease etiology leading toward tailored diagnostics, prognostics and therapy. The currently established computational models of hepatic metabolism that have proven to be essential for understanding of non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) are limited to the description of gender-independent response or reflect solely the response of the males. Herein we present LiverSex, the first sex-based multi-tissue and multi-level liver metabolic computational model. The model was constructed based on in silico liver model SteatoNet and the object-oriented modeling. The crucial factor in adaptation of liver metabolism to the sex is the inclusion of estrogen and androgen receptor responses to respective hormones and the link to sex-differences in growth hormone release. The model was extensively validated on literature data and experimental data obtained from wild type C57BL/6 mice fed with regular chow and western diet. These experimental results show extensive sex-dependent changes and could not be reproduced in silico with the uniform model SteatoNet. LiverSex represents the first large-scale liver metabolic model, which allows a detailed insight into the sex-dependent complex liver pathologies, and how the genetic and environmental factors interact with the sex in disease appearance and progression. We used the model to identify the most important sex-dependent metabolic pathways, which are involved in accumulation of triglycerides representing initial steps of NAFLD. We identified PGC1A, PPARα, FXR, and LXR as regulatory factors that could become important in sex-dependent personalized treatment of NAFLD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 20%
Student > Ph. D. Student 6 12%
Student > Master 5 10%
Other 4 8%
Student > Bachelor 2 4%
Other 9 18%
Unknown 15 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 27%
Pharmacology, Toxicology and Pharmaceutical Science 5 10%
Medicine and Dentistry 3 6%
Nursing and Health Professions 2 4%
Immunology and Microbiology 2 4%
Other 6 12%
Unknown 19 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2021.
All research outputs
#13,660,886
of 23,567,572 outputs
Outputs from Frontiers in Physiology
#4,514
of 14,284 outputs
Outputs of similar age
#166,933
of 330,292 outputs
Outputs of similar age from Frontiers in Physiology
#170
of 467 outputs
Altmetric has tracked 23,567,572 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 14,284 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,292 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 467 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.