↓ Skip to main content

Prediction of Molecular Mechanisms for LianXia NingXin Formula: A Network Pharmacology Study

Overview of attention for article published in Frontiers in Physiology, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prediction of Molecular Mechanisms for LianXia NingXin Formula: A Network Pharmacology Study
Published in
Frontiers in Physiology, May 2018
DOI 10.3389/fphys.2018.00489
Pubmed ID
Authors

Yang Yang, Kuo Yang, Teng Hao, Guodong Zhu, Ruby Ling, Xuezhong Zhou, Ping Li

Abstract

Objectives: Network pharmacological methods were used to investigate the underlying molecular mechanisms of LianXia NingXin (LXNX) formula, a Chinese prescription, to treat coronary heart disease (CHD) and disease phenotypes (CHD related diseases and symptoms). Methods: The different seed gene lists associated with the herbs of LXNX formula, the CHD co-morbid diseases and symptoms which were relieved by the LXNX formula (co-morbid diseases and symptoms) were curated manually from biomedical databases and published biomedical literatures. Module enrichment analysis was used to identify CHD-related disease modules in the protein-protein interaction (PPI) network which were also associated to the targets of LXNX formula (LXNX formula's CHD modules). The molecular characteristics of LXNX formula's CHD modules were investigated via functional enrichment analysis in terms of gene ontology and pathways. We performed shortest path analysis to explore the interactions between the drug targets of LXNX formula and CHD related disease phenotypes (e.g., co-morbid diseases and symptoms). Results: We identified two significant CHD related disease modules (i.e., M146 and M203), which were targeted by the herbs of LXNX formula. Pathway and GO term functional analysis results indicated that G-protein coupled receptor signaling pathways (GPCR) of M146 and cellular protein metabolic process of M203 are important functional pathways for the respective module. This is further confirmed by the shortest path analysis between the drug targets of LXNX formula and the aforementioned disease modules. In addition, corticotropin releasing hormone (CRH) and natriuretic peptide precursor A (NPPA) are the only two LXNX formula target proteins with the low shortest path length (on average shorter than 3) to their respective CHD module and co-morbid disease and symptom gene groups. Conclusion: G-protein coupled receptor signaling pathway and cellular protein metabolic process are the key LXNX formula's pathways to treat CHD disease phenotypes, in which CRH and NPPA are the two key drug targets of LXNX formula. Further evidences from Chinese herb pharmacological databases indicate that Pinellia ternata (Banxia) has relatively strong adjustive functions on the two key targets.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 16%
Student > Bachelor 2 11%
Unspecified 2 11%
Student > Postgraduate 2 11%
Professor > Associate Professor 2 11%
Other 3 16%
Unknown 5 26%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 3 16%
Unspecified 2 11%
Biochemistry, Genetics and Molecular Biology 2 11%
Medicine and Dentistry 2 11%
Computer Science 1 5%
Other 2 11%
Unknown 7 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 June 2018.
All research outputs
#18,623,070
of 23,070,218 outputs
Outputs from Frontiers in Physiology
#8,253
of 13,813 outputs
Outputs of similar age
#253,945
of 327,730 outputs
Outputs of similar age from Frontiers in Physiology
#296
of 475 outputs
Altmetric has tracked 23,070,218 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,813 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,730 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 475 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.