↓ Skip to main content

Using Regularization to Infer Cell Line Specificity in Logical Network Models of Signaling Pathways

Overview of attention for article published in Frontiers in Physiology, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Using Regularization to Infer Cell Line Specificity in Logical Network Models of Signaling Pathways
Published in
Frontiers in Physiology, May 2018
DOI 10.3389/fphys.2018.00550
Pubmed ID
Authors

Sébastien De Landtsheer, Philippe Lucarelli, Thomas Sauter

Abstract

Understanding the functional properties of cells of different origins is a long-standing challenge of personalized medicine. Especially in cancer, the high heterogeneity observed in patients slows down the development of effective cures. The molecular differences between cell types or between healthy and diseased cellular states are usually determined by the wiring of regulatory networks. Understanding these molecular and cellular differences at the systems level would improve patient stratification and facilitate the design of rational intervention strategies. Models of cellular regulatory networks frequently make weak assumptions about the distribution of model parameters across cell types or patients. These assumptions are usually expressed in the form of regularization of the objective function of the optimization problem. We propose a new method of regularization for network models of signaling pathways based on the local density of the inferred parameter values within the parameter space. Our method reduces the complexity of models by creating groups of cell line-specific parameters which can then be optimized together. We demonstrate the use of our method by recovering the correct topology and inferring accurate values of the parameters of a small synthetic model. To show the value of our method in a realistic setting, we re-analyze a recently published phosphoproteomic dataset from a panel of 14 colon cancer cell lines. We conclude that our method efficiently reduces model complexity and helps recovering context-specific regulatory information.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 26%
Researcher 4 21%
Student > Doctoral Student 2 11%
Student > Postgraduate 2 11%
Student > Master 1 5%
Other 1 5%
Unknown 4 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 42%
Agricultural and Biological Sciences 2 11%
Computer Science 1 5%
Medicine and Dentistry 1 5%
Engineering 1 5%
Other 0 0%
Unknown 6 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 June 2018.
All research outputs
#13,662,605
of 23,577,654 outputs
Outputs from Frontiers in Physiology
#4,514
of 14,285 outputs
Outputs of similar age
#166,896
of 331,259 outputs
Outputs of similar age from Frontiers in Physiology
#190
of 476 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 14,285 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,259 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 476 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.