↓ Skip to main content

Specific Binding Protein ABCC1 Is Associated With Cry2Ab Toxicity in Helicoverpa armigera

Overview of attention for article published in Frontiers in Physiology, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Specific Binding Protein ABCC1 Is Associated With Cry2Ab Toxicity in Helicoverpa armigera
Published in
Frontiers in Physiology, June 2018
DOI 10.3389/fphys.2018.00745
Pubmed ID
Authors

Lin Chen, Jizhen Wei, Chen Liu, Wanna Zhang, Bingjie Wang, LinLin Niu, Gemei Liang

Abstract

A pyramid strategy combining the crystal (Cry) 1A and 2A toxins in Bacillus thuringiensis (Bt) crops are active against many species of insects and nematode larvae. It has been widely used to delay pest adaption to genetically modified plants and broaden the insecticidal spectrum in many countries. Unfortunately, Cry2A can also bind with the specific receptor proteins of Cry1A. ATP-binding cassette (ABC) transporters can interact with Cry1A toxins as receptors in the insect midgut, and ABC transporter mutations result in resistance to Bt proteins. However, there is limited knowledge of the ABC transporters that specifically bind to Cry2Ab. Here, we cloned the ABCC1 gene in Helicoverpa armigera, which expressed at all larval stages and in nine different tissues. Expression levels were particularly high in fifth-instar larvae and Malpighian tubules. The two heterologously expressed HaABCC1 transmembrane domain peptides could specifically bind to Cry2Ab with high affinity levels. Moreover, transfecting HaABCC1 into the Spodoptera frugiperda nine insect cell significantly increased its mortality when exposed to Cry2Ab in vitro, and silencing HaABCC1 in H. armigera by RNA interference significantly reduced the mortality of larvae exposed to Cry2Ab in vivo. Altogether current results suggest that HaABCC1 serves as a functional receptor for Cry2Ab.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 4 12%
Student > Ph. D. Student 4 12%
Researcher 4 12%
Student > Master 4 12%
Student > Postgraduate 3 9%
Other 4 12%
Unknown 11 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 38%
Biochemistry, Genetics and Molecular Biology 8 24%
Medicine and Dentistry 1 3%
Unknown 12 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2018.
All research outputs
#15,539,088
of 23,094,276 outputs
Outputs from Frontiers in Physiology
#6,790
of 13,842 outputs
Outputs of similar age
#208,387
of 328,045 outputs
Outputs of similar age from Frontiers in Physiology
#296
of 523 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,842 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,045 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 523 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.