↓ Skip to main content

Renal and Blood Pressure Response to a High-Salt Diet in Mice With Reduced Global Expression of the Glucocorticoid Receptor

Overview of attention for article published in Frontiers in Physiology, July 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Renal and Blood Pressure Response to a High-Salt Diet in Mice With Reduced Global Expression of the Glucocorticoid Receptor
Published in
Frontiers in Physiology, July 2018
DOI 10.3389/fphys.2018.00848
Pubmed ID
Authors

Jessica R. Ivy, Louise C. Evans, Rebecca Moorhouse, Rachel V. Richardson, Emad A. S. Al-Dujaili, Peter W. Flatman, Christopher J. Kenyon, Karen E. Chapman, Matthew A. Bailey

Abstract

Salt-sensitive hypertension is common in glucocorticoid excess. Glucocorticoid resistance also presents with hypercortisolemia and hypertension but the relationship between salt intake and blood pressure (BP) is not well defined. GRβgeo/+ mice have global glucocorticoid receptor (GR) haploinsufficiency and increased BP. Here we examined the effect of high salt diet on BP, salt excretion and renal blood flow in GRβgeo/+mice. Basal BP was ∼10 mmHg higher in male GRβgeo/+ mice than in GR+/+ littermates. This modest increase was amplified by ∼10 mmHg following a high-salt diet in GRβgeo/+ mice. High salt reduced urinary aldosterone excretion but increased renal mineralocorticoid receptor expression in both genotypes. Corticosterone, and to a lesser extent deoxycorticosterone, excretion was increased in GRβgeo/+ mice following a high-salt challenge, consistent with enhanced 24 h production. GR+/+ mice increased fractional sodium excretion and reduced renal vascular resistance during the high salt challenge, retaining neutral sodium balance. In contrast, sodium excretion and renal vascular resistance did not adapt to high salt in GRβgeo/+ mice, resulting in transient sodium retention and sustained hypertension. With high-salt diet, Slc12a3 and Scnn1a mRNAs were higher in GRβgeo/+ than controls, and this was reflected in an exaggerated natriuretic response to thiazide and benzamil, inhibitors of NCC and ENaC, respectively. Reduction in GR expression causes salt-sensitivity and an adaptive failure of the renal vasculature and tubule, most likely reflecting sustained mineralocorticoid receptor activation. This provides a mechanistic basis to understand the hypertension associated with loss-of-function polymorphisms in GR in the context of habitually high salt intake.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 32%
Student > Master 4 14%
Lecturer 2 7%
Student > Doctoral Student 2 7%
Professor > Associate Professor 2 7%
Other 3 11%
Unknown 6 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 18%
Medicine and Dentistry 5 18%
Neuroscience 2 7%
Immunology and Microbiology 2 7%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 4 14%
Unknown 9 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 September 2018.
All research outputs
#13,043,199
of 23,096,849 outputs
Outputs from Frontiers in Physiology
#4,084
of 13,842 outputs
Outputs of similar age
#157,106
of 326,642 outputs
Outputs of similar age from Frontiers in Physiology
#211
of 501 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,842 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,642 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 501 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.