↓ Skip to main content

Are kinesins required for organelle trafficking in plant cells?

Overview of attention for article published in Frontiers in Plant Science, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Are kinesins required for organelle trafficking in plant cells?
Published in
Frontiers in Plant Science, January 2012
DOI 10.3389/fpls.2012.00170
Pubmed ID
Authors

Giampiero Cai, Mauro Cresti

Abstract

Plant cells exhibit active movement of membrane-bounded materials, which is more pronounced in large cells but is also appreciable in medium-sized cells and in tip-growing cells (such as pollen tubes and root hairs). Trafficking of organelles (such as Golgi bodies, endoplasmic reticulum, peroxisomes, and mitochondria) and vesicles is essential for plant cell physiology and allows a more or less homogeneous distribution of the cell content. It is well established that the long-range trafficking of organelles is dependent essentially on the network of actin filaments and is powered by the enzyme activity of myosins. However, some lines of evidence suggest that microtubules and members of the kinesin microtubule-based motor superfamily might have a role in the positioning and/or short-range movement of cell organelles and vesicles. Data collected in different cells (such as trichomes and pollen tubes), in specific stages of the plant cell life cycle (for example, during phragmoplast development) and for different organelle classes (mitochondria, Golgi bodies, and chloroplasts) encourage the hypothesis that microtubule-based motors might play subtle yet unclarified roles in organelle trafficking. In some cases, this function could be carried out in cooperation with actin filaments according to the model of "functional cooperation" by which motors of different families are associated with the organelle surface. Since available data did not provide an unambiguous conclusion with regard to the role of kinesins in organelle transport, here we want to debate such hypothesis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
United States 1 1%
China 1 1%
Canada 1 1%
Unknown 64 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 24%
Student > Ph. D. Student 11 16%
Student > Master 7 10%
Professor > Associate Professor 6 9%
Student > Bachelor 3 4%
Other 9 13%
Unknown 16 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 38 56%
Biochemistry, Genetics and Molecular Biology 12 18%
Computer Science 1 1%
Engineering 1 1%
Unknown 16 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 July 2012.
All research outputs
#20,165,369
of 22,675,759 outputs
Outputs from Frontiers in Plant Science
#15,745
of 19,843 outputs
Outputs of similar age
#221,176
of 244,088 outputs
Outputs of similar age from Frontiers in Plant Science
#109
of 195 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,843 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 195 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.