↓ Skip to main content

Using the Yeast Three-Hybrid System to Identify Proteins that Interact with a Phloem-Mobile mRNA

Overview of attention for article published in Frontiers in Plant Science, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Using the Yeast Three-Hybrid System to Identify Proteins that Interact with a Phloem-Mobile mRNA
Published in
Frontiers in Plant Science, January 2012
DOI 10.3389/fpls.2012.00189
Pubmed ID
Authors

Sung Ki Cho, Il-Ho Kang, Tyrell Carr, David J. Hannapel

Abstract

Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3' untranslated region (UTR) of the RNA in mediating transport. Because the 3' UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3' UTR of StBEL5 as bait in the yeast three-hybrid (Y3H) system to identify putative partner RNA-binding proteins (RBPs). From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified. Thirty-five proteins that were predicted to function in either RNA- or DNA-binding were selected from this pool. Seven were monitored for their expression profiles and further evaluated for their capacity to bind to the 3' UTR of StBEL5 using β-galactosidase assays in the Y3H system and RNA gel-shift assays. Among the final selections were two RBPs, a zinc finger protein, and one protein, StLSH10, from a family involved in light signaling. In this study, the Y3H system is presented as a valuable tool to screen and verify interactions between target RNAs and putative RBPs. These results can shed light on the dynamics and composition of plant RNA-protein complexes that function to regulate RNA metabolism.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Norway 1 2%
Unknown 50 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 25%
Researcher 9 18%
Student > Master 7 14%
Student > Bachelor 3 6%
Student > Doctoral Student 3 6%
Other 7 14%
Unknown 9 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 49%
Biochemistry, Genetics and Molecular Biology 14 27%
Unspecified 2 4%
Nursing and Health Professions 1 2%
Unknown 9 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 August 2012.
All research outputs
#20,165,369
of 22,675,759 outputs
Outputs from Frontiers in Plant Science
#15,745
of 19,848 outputs
Outputs of similar age
#221,176
of 244,088 outputs
Outputs of similar age from Frontiers in Plant Science
#109
of 195 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,848 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 195 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.