↓ Skip to main content

PredPlantPTS1: A Web Server for the Prediction of Plant Peroxisomal Proteins

Overview of attention for article published in Frontiers in Plant Science, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PredPlantPTS1: A Web Server for the Prediction of Plant Peroxisomal Proteins
Published in
Frontiers in Plant Science, January 2012
DOI 10.3389/fpls.2012.00194
Pubmed ID
Authors

Sigrun Reumann, Daniela Buchwald, Thomas Lingner

Abstract

Prediction of subcellular protein localization is essential to correctly assign unknown proteins to cell organelle-specific protein networks and to ultimately determine protein function. For metazoa, several computational approaches have been developed in the past decade to predict peroxisomal proteins carrying the peroxisome targeting signal type 1 (PTS1). However, plant-specific PTS1 protein prediction methods have been lacking up to now, and pre-existing methods generally were incapable of correctly predicting low-abundance plant proteins possessing non-canonical PTS1 patterns. Recently, we presented a machine learning approach that is able to predict PTS1 proteins for higher plants (spermatophytes) with high accuracy and which can correctly identify unknown targeting patterns, i.e., novel PTS1 tripeptides and tripeptide residues. Here we describe the first plant-specific web server PredPlantPTS1 for the prediction of plant PTS1 proteins using the above-mentioned underlying models. The server allows the submission of protein sequences from diverse spermatophytes and also performs well for mosses and algae. The easy-to-use web interface provides detailed output in terms of (i) the peroxisomal targeting probability of the given sequence, (ii) information whether a particular non-canonical PTS1 tripeptide has already been experimentally verified, and (iii) the prediction scores for the single C-terminal 14 amino acid residues. The latter allows identification of predicted residues that inhibit peroxisome targeting and which can be optimized using site-directed mutagenesis to raise the peroxisome targeting efficiency. The prediction server will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants. PredPlantPTS1 is freely accessible at ppp.gobics.de.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 3%
Czechia 1 3%
Unknown 30 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Researcher 4 13%
Student > Bachelor 4 13%
Student > Master 3 9%
Student > Doctoral Student 2 6%
Other 6 19%
Unknown 7 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 31%
Biochemistry, Genetics and Molecular Biology 6 19%
Computer Science 3 9%
Medicine and Dentistry 2 6%
Social Sciences 1 3%
Other 1 3%
Unknown 9 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 August 2012.
All research outputs
#20,165,369
of 22,675,759 outputs
Outputs from Frontiers in Plant Science
#15,745
of 19,848 outputs
Outputs of similar age
#221,176
of 244,088 outputs
Outputs of similar age from Frontiers in Plant Science
#109
of 195 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,848 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 195 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.