↓ Skip to main content

P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing

Overview of attention for article published in Frontiers in Plant Science, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing
Published in
Frontiers in Plant Science, January 2013
DOI 10.3389/fpls.2013.00225
Pubmed ID
Authors

Stephan B. Jekat, Antonia M. Ernst, Andreas von Bohl, Sascia Zielonka, Richard M. Twyman, Gundula A. Noll, Dirk Prüfer

Abstract

Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 46 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 18 38%
Student > Master 6 13%
Researcher 5 11%
Student > Ph. D. Student 3 6%
Professor 3 6%
Other 4 9%
Unknown 8 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 38%
Agricultural and Biological Sciences 18 38%
Environmental Science 2 4%
Medicine and Dentistry 1 2%
Unknown 8 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2013.
All research outputs
#20,195,877
of 22,713,403 outputs
Outputs from Frontiers in Plant Science
#15,851
of 19,949 outputs
Outputs of similar age
#248,765
of 280,747 outputs
Outputs of similar age from Frontiers in Plant Science
#241
of 517 outputs
Altmetric has tracked 22,713,403 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,949 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,747 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 517 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.