↓ Skip to main content

Reprogramming of plants during systemic acquired resistance

Overview of attention for article published in Frontiers in Plant Science, January 2013
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
101 Dimensions

Readers on

mendeley
215 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reprogramming of plants during systemic acquired resistance
Published in
Frontiers in Plant Science, January 2013
DOI 10.3389/fpls.2013.00252
Pubmed ID
Authors

Katrin Gruner, Thomas Griebel, Hana Návarová, Elham Attaran, Jürgen Zeier

Abstract

Genome-wide microarray analyses revealed that during biological activation of systemic acquired resistance (SAR) in Arabidopsis, the transcript levels of several hundred plant genes were consistently up- (SAR(+) genes) or down-regulated (SAR(-) genes) in systemic, non-inoculated leaf tissue. This transcriptional reprogramming fully depended on the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1). Functional gene categorization showed that genes associated with salicylic acid (SA)-associated defenses, signal transduction, transport, and the secretory machinery are overrepresented in the group of SAR(+) genes, and that the group of SAR(-) genes is enriched in genes activated via the jasmonate (JA)/ethylene (ET)-defense pathway, as well as in genes associated with cell wall remodeling and biosynthesis of constitutively produced secondary metabolites. This suggests that SAR-induced plants reallocate part of their physiological activity from vegetative growth towards SA-related defense activation. Alignment of the SAR expression data with other microarray information allowed us to define three clusters of SAR(+) genes. Cluster I consists of genes tightly regulated by SA. Cluster II genes can be expressed independently of SA, and this group is moderately enriched in H2O2- and abscisic acid (ABA)-responsive genes. The expression of the cluster III SAR(+) genes is partly SA-dependent. We propose that SA-independent signaling events in early stages of SAR activation enable the biosynthesis of SA and thus initiate SA-dependent SAR signaling. Both SA-independent and SA-dependent events tightly co-operate to realize SAR. SAR(+) genes function in the establishment of diverse resistance layers, in the direct execution of resistance against different (hemi-)biotrophic pathogen types, in suppression of the JA- and ABA-signaling pathways, in redox homeostasis, and in the containment of defense response activation. Our data further indicated that SAR-associated defense priming can be realized by partial pre-activation of particular defense pathways.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 215 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 3 1%
France 2 <1%
Germany 2 <1%
Indonesia 1 <1%
Ireland 1 <1%
Brazil 1 <1%
Japan 1 <1%
United States 1 <1%
Croatia 1 <1%
Other 0 0%
Unknown 202 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 59 27%
Researcher 35 16%
Student > Master 20 9%
Student > Bachelor 20 9%
Student > Doctoral Student 14 7%
Other 40 19%
Unknown 27 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 139 65%
Biochemistry, Genetics and Molecular Biology 39 18%
Environmental Science 5 2%
Immunology and Microbiology 1 <1%
Psychology 1 <1%
Other 2 <1%
Unknown 28 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 August 2013.
All research outputs
#17,691,177
of 22,714,025 outputs
Outputs from Frontiers in Plant Science
#11,858
of 19,950 outputs
Outputs of similar age
#210,191
of 280,752 outputs
Outputs of similar age from Frontiers in Plant Science
#172
of 517 outputs
Altmetric has tracked 22,714,025 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,950 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,752 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 517 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.