↓ Skip to main content

Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

Overview of attention for article published in Frontiers in Plant Science, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
84 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species
Published in
Frontiers in Plant Science, January 2013
DOI 10.3389/fpls.2013.00361
Pubmed ID
Authors

Rachel L. Vannette, Mark D. Hunter, Sergio Rasmann

Abstract

Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)-which all produce toxic cardenolides-with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 84 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Switzerland 2 2%
Unknown 80 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 25%
Researcher 18 21%
Student > Master 13 15%
Student > Bachelor 8 10%
Student > Doctoral Student 5 6%
Other 12 14%
Unknown 7 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 57 68%
Environmental Science 6 7%
Biochemistry, Genetics and Molecular Biology 3 4%
Computer Science 1 1%
Immunology and Microbiology 1 1%
Other 3 4%
Unknown 13 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2013.
All research outputs
#20,202,510
of 22,721,584 outputs
Outputs from Frontiers in Plant Science
#15,868
of 19,973 outputs
Outputs of similar age
#248,784
of 280,761 outputs
Outputs of similar age from Frontiers in Plant Science
#241
of 517 outputs
Altmetric has tracked 22,721,584 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,973 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,761 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 517 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.