↓ Skip to main content

Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought

Overview of attention for article published in Frontiers in Plant Science, January 2013
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
1 X user

Readers on

mendeley
176 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought
Published in
Frontiers in Plant Science, January 2013
DOI 10.3389/fpls.2013.00400
Pubmed ID
Authors

Teresa Rosas, Lucía Galiano, Romà Ogaya, Josep Peñuelas, Jordi Martínez-Vilalta

Abstract

Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.). In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 176 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 3 2%
Austria 1 <1%
Panama 1 <1%
India 1 <1%
United States 1 <1%
Unknown 169 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 46 26%
Student > Ph. D. Student 35 20%
Student > Master 26 15%
Student > Doctoral Student 15 9%
Student > Bachelor 7 4%
Other 19 11%
Unknown 28 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 65 37%
Environmental Science 49 28%
Earth and Planetary Sciences 7 4%
Unspecified 2 1%
Chemistry 2 1%
Other 5 3%
Unknown 46 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2014.
All research outputs
#18,374,472
of 22,758,248 outputs
Outputs from Frontiers in Plant Science
#13,642
of 20,059 outputs
Outputs of similar age
#218,177
of 280,897 outputs
Outputs of similar age from Frontiers in Plant Science
#216
of 517 outputs
Altmetric has tracked 22,758,248 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,059 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,897 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 517 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.