↓ Skip to main content

Using cellzilla for plant growth simulations at the cellular level

Overview of attention for article published in Frontiers in Plant Science, January 2013
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Using cellzilla for plant growth simulations at the cellular level
Published in
Frontiers in Plant Science, January 2013
DOI 10.3389/fpls.2013.00408
Pubmed ID
Authors

Bruce E. Shapiro, Elliot M. Meyerowitz, Eric Mjolsness

Abstract

Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 3%
United States 1 3%
Unknown 37 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 28%
Researcher 8 21%
Student > Bachelor 4 10%
Professor 3 8%
Student > Doctoral Student 2 5%
Other 6 15%
Unknown 5 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 44%
Computer Science 4 10%
Biochemistry, Genetics and Molecular Biology 4 10%
Medicine and Dentistry 2 5%
Mathematics 1 3%
Other 5 13%
Unknown 6 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 October 2013.
All research outputs
#18,348,542
of 22,723,682 outputs
Outputs from Frontiers in Plant Science
#13,584
of 19,973 outputs
Outputs of similar age
#218,065
of 280,763 outputs
Outputs of similar age from Frontiers in Plant Science
#216
of 517 outputs
Altmetric has tracked 22,723,682 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,973 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,763 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 517 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.