↓ Skip to main content

Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis

Overview of attention for article published in Frontiers in Plant Science, March 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
154 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis
Published in
Frontiers in Plant Science, March 2014
DOI 10.3389/fpls.2014.00109
Pubmed ID
Authors

Meriyem Aktas, Linna Danne, Philip Möller, Franz Narberhaus

Abstract

Many cellular processes critically depend on the membrane composition. In this review, we focus on the biosynthesis and physiological roles of membrane lipids in the plant pathogen Agrobacterium tumefaciens. The major components of A. tumefaciens membranes are the phospholipids (PLs), phosphatidylethanolamine (PE), phosphatidylglycerol, phosphatidylcholine (PC) and cardiolipin, and ornithine lipids (OLs). Under phosphate-limited conditions, the membrane composition shifts to phosphate-free lipids like glycolipids, OLs and a betaine lipid. Remarkably, PC and OLs have opposing effects on virulence of A. tumefaciens. OL-lacking A. tumefaciens mutants form tumors on the host plant earlier than the wild type suggesting a reduced host defense response in the absence of OLs. In contrast, A. tumefaciens is compromised in tumor formation in the absence of PC. In general, PC is a rare component of bacterial membranes but amount to ~22% of all PLs in A. tumefaciens. PC biosynthesis occurs via two pathways. The phospholipid N-methyltransferase PmtA methylates PE via the intermediates monomethyl-PE and dimethyl-PE to PC. In the second pathway, the membrane-integral enzyme PC synthase (Pcs) condenses choline with CDP-diacylglycerol to PC. Apart from the virulence defect, PC-deficient A. tumefaciens pmtA and pcs double mutants show reduced motility, enhanced biofilm formation and increased sensitivity towards detergent and thermal stress. In summary, there is cumulative evidence that the membrane lipid composition of A. tumefaciens is critical for agrobacterial physiology and tumor formation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 154 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 154 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 35 23%
Student > Bachelor 29 19%
Student > Master 19 12%
Researcher 9 6%
Student > Doctoral Student 7 5%
Other 16 10%
Unknown 39 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 35 23%
Biochemistry, Genetics and Molecular Biology 32 21%
Chemistry 13 8%
Immunology and Microbiology 8 5%
Pharmacology, Toxicology and Pharmaceutical Science 4 3%
Other 13 8%
Unknown 49 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2014.
All research outputs
#20,224,618
of 22,749,166 outputs
Outputs from Frontiers in Plant Science
#15,942
of 20,052 outputs
Outputs of similar age
#192,092
of 224,560 outputs
Outputs of similar age from Frontiers in Plant Science
#47
of 103 outputs
Altmetric has tracked 22,749,166 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,052 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 224,560 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 103 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.